Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modeling the effect of the RB tumor suppressor on disease progression: dependence on oncogene network and cellular context

Abstract

The retinoblastoma tumor suppressor, RB, is a key regulator of cellular proliferation that is functionally inactivated at high frequency in human cancer. Although RB has been extensively studied with regard to tumor etiology, loss of tumor-suppressor function often occurs relatively late in tumor progression. Therefore, inactivation of RB could have a profound impact on the behavior of tumors driven by discrete oncogenes. Here, collaboration between Ras or c-Myc deregulation and RB functional state was investigated in a model of conditional genetic deletion to decipher the effects related to disease progression. These studies showed that RB loss had a robust impact on mitogen dependence, anchorage dependence and overall survival, which was significantly modified by oncogene activation. Specifically, RB deficiency predisposed c-Myc-expressing cells to cell death and reduced overall tumorigenic proliferation. In contrast, RB deficiency exacerbated the tumorigenic behavior of Ras-transformed cells in both the model system and human tumor cell lines. As these tumors exhibited highly aggressive behavior, the possibility of exploiting the intrinsic sensitivity to cell death with RB loss was evaluated. Particularly, although Ras-transformed, RB-deficient cells bypassed the G1-checkpoint elicited by pharmacological activation of the p53 pathway, they were also highly sensitized to cell death. Altogether, these data suggest that the impact of RB deletion is dependent on the oncogene milieu, and can directly contribute to transformed phenotypes and response to therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aktas H, Cai H, Cooper GM . (1997). Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol Cell Biol 17: 3850–3857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkarain A, Slingerland J . (2004). Deregulation of p27 by oncogenic signaling and its prognostic significance in breast cancer. Breast Cancer Res 6: 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Berkovich E, Ginsberg D . (2001). Ras induces elevation of E2F-1 mRNA levels. J Biol Chem 276: 42851–42856.

    Article  CAS  PubMed  Google Scholar 

  • Blais A, Dynlacht BD . (2004). Hitting their targets: an emerging picture of E2F and cell cycle control. Curr Opin Genet Dev 14: 527–532.

    Article  CAS  PubMed  Google Scholar 

  • Blais A, Dynlacht BD . (2007). E2F-associated chromatin modifiers and cell cycle control. Curr Opin Cell Biol 19: 658–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JL . (1989). ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  • Burkhart DL, Sage J . (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8: 671–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    Article  CAS  PubMed  Google Scholar 

  • Crespo P, Leon J . (2000). Ras proteins in the control of the cell cycle and cell differentiation. Cell Mol Life Sci 57: 1613–1636.

    Article  CAS  PubMed  Google Scholar 

  • DeGregori J . (2006). Surprising dependency for retinoblastoma protein in ras-mediated tumorigenesis. Mol Cell Biol 26: 1165–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. (1992). Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Filmus J, Robles AI, Shi W, Wong MJ, Colombo LL, Conti CJ . (1994). Induction of cyclin D1 overexpression by activated ras. Oncogene 9: 3627–3633.

    CAS  PubMed  Google Scholar 

  • Groth A, Weber JD, Willumsen BM, Sherr CJ, Roussel MF . (2000). Oncogenic Ras induces p19ARF and growth arrest in mouse embryo fibroblasts lacking p21Cip1 and p27Kip1 without activating cyclin D-dependent kinases. J Biol Chem 275: 27473–27480.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H, Eick D . (1994). Mediation of c-Myc-induced apoptosis by p53. Science 265: 2091–2093.

    Article  CAS  PubMed  Google Scholar 

  • Ho VM, Schaffer BE, Karnezis AN, Park KS, Sage J . (2009). The retinoblastoma gene Rb and its family member p130 suppress lung adenocarcinoma induced by oncogenic K-Ras. Oncogene 28: 1393–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman B, Liebermann DA . (2008). Apoptotic signaling by c-MYC. Oncogene 27: 6462–6472.

    Article  CAS  PubMed  Google Scholar 

  • Horowitz JM, Park SH, Bogenmann E, Cheng JC, Yandell DW, Kaye FJ et al. (1990). Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 87: 2775–2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iaquinta PJ, Lees JA . (2007). Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 19: 649–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharitonova MA, Kopnin PB, Vasiliev JM . (2007). Transformation by RAS oncogene decreases the width of substrate-spread fibroblasts but not their length. Cell Biol Int 31: 220–223.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Aonuma M, Lee SH, Fukutake S, McCormick F . (2008). E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 27: 5303–5314.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen ES, Knudsen KE . (2008). Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 8: 714–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara MF, Santos M, Ruiz S, Segrelles C, Moral M, Martinez-Cruz AB et al. (2008). p107 acts as a tumor suppressor in pRb-deficient epidermis. Mol Carcinog 47: 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Lee EY, To H, Shew JY, Bookstein R, Scully P, Lee WH . (1988). Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241: 218–221.

    Article  CAS  PubMed  Google Scholar 

  • Leung JY, Ehmann GL, Giangrande PH, Nevins JR . (2008). A role for Myc in facilitating transcription activation by E2F1. Oncogene 27: 4172–4179.

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Chao JR, Jiang MC, Ng SY, Yen JJ, Yang-Yen HF . (1995). Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol Cell Biol 15: 3654–3663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macleod KF, Hu Y, Jacks T . (1996). Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. Embo J 15: 6178–6188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacPherson D, Conkrite K, Tam M, Mukai S, Mu D, Jacks T . (2007). Murine bilateral retinoblastoma exhibiting rapid-onset, metastatic progression and N-myc gene amplification. EMBO J 26: 784–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallette FA, Goumard S, Gaumont-Leclerc MF, Moiseeva O, Ferbeyre G . (2004). Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene 23: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A . (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14: 994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markey MP, Angus SP, Strobeck MW, Williams SL, Gunawardena RW, Aronow BJ et al. (2002). Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Res 62: 6587–6597.

    CAS  PubMed  Google Scholar 

  • Markey MP, Bergseid J, Bosco EE, Stengel K, Xu H, Mayhew CN et al. (2007). Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. Oncogene 26: 6307–6318.

    Article  CAS  PubMed  Google Scholar 

  • Matsumura I, Tanaka H, Kanakura Y . (2003). E2F1 and c-Myc in cell growth and death. Cell Cycle 2: 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto H, Shuin T, Ikeda I, Hosaka M, Kubota Y . (1996). Loss of heterozygosity at the p53, RB, DCC and APC tumor suppressor gene loci in human bladder cancer. J Urol 155: 1444–1447.

    Article  CAS  PubMed  Google Scholar 

  • Morgenbesser SD, Williams BO, Jacks T, DePinho RA . (1994). p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371: 72–74.

    Article  CAS  PubMed  Google Scholar 

  • Nevins JR . (2001). The Rb/E2F pathway and cancer. Hum Mol Genet 10: 699–703.

    Article  CAS  PubMed  Google Scholar 

  • Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R et al. (1997). Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386: 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Prendergast GC . (1999). Mechanisms of apoptosis by c-Myc. Oncogene 18: 2967–2987.

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Corum L, Meng Q, Blenis J, Zheng JZ, Shi X et al. (2004). PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration. Am J Physiol Cell Physiol 286: C153–C163.

    Article  CAS  PubMed  Google Scholar 

  • Rogoff HA, Kowalik TF . (2004). Life, death and E2F: linking proliferation control and DNA damage signaling via E2F1. Cell Cycle 3: 845–846.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz S, Santos M, Lara MF, Segrelles C, Ballestin C, Paramio JM . (2005). Unexpected roles for pRb in mouse skin carcinogenesis. Cancer Res 65: 9678–9686.

    Article  CAS  PubMed  Google Scholar 

  • Santos M, Ruiz S, Lara MF, Segrelles C, Moral M, Martinez-Cruz AB et al. (2008). Susceptibility of pRb-deficient epidermis to chemical skin carcinogenesis is dependent on the p107 allele dosage. Mol Carcinog 47: 815–821.

    Article  CAS  PubMed  Google Scholar 

  • Seeley SL, Bosco EE, Kramer E, Parysek LM, Knudsen ES . (2007). Distinct roles for RB loss on cell cycle control, cisplatin response, and immortalization in Schwann cells. Cancer Lett 245: 205–217.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Shamma A, Takegami Y, Miki T, Kitajima S, Noda M, Obara T et al. (2009). Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 15: 255–269.

    Article  CAS  PubMed  Google Scholar 

  • Shangary S, Wang S . (2009). Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49: 223–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stengel KR, Dean JL, Seeley SL, Mayhew CN, Knudsen ES . (2008). RB status governs differential sensitivity to cytotoxic and molecularly-targeted therapeutic agents. Cell Cycle 7: 1095–1103.

    Article  CAS  PubMed  Google Scholar 

  • Wagner AJ, Kokontis JM, Hay N . (1994). Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 8: 2817–2830.

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Knudsen ES, Welch PJ . (1994). The retinoblastoma tumor suppressor protein. Adv Cancer Res 64: 25–85.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Williams JP, Stewart T, Li B, Mulloy R, Dimova D, Classon M . (2006). The retinoblastoma protein is required for Ras-induced oncogenic transformation. Mol Cell Biol 26: 1170–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagorski WA, Knudsen ES, Reed MF . (2007). Retinoblastoma deficiency increases chemosensitivity in lung cancer. Cancer Res 67: 8264–8273.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM . (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12: 2997–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E S Knudsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, J., McClendon, A., Stengel, K. et al. Modeling the effect of the RB tumor suppressor on disease progression: dependence on oncogene network and cellular context. Oncogene 29, 68–80 (2010). https://doi.org/10.1038/onc.2009.313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.313

Keywords

This article is cited by

Search

Quick links