Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells

Abstract

Earlier studies indicated that density-arrested cancer cells released an unidentified growth inhibitor whose secretion was prevented by overexpression of the lysosomal protease cathepsin D (cath D). In this study, this growth inhibitor was purified by affinity chromatography and identified as the heat shock cognate 70 protein (hsc70) based on its peptide microsequencing and specific antibody recognition. Among intracellular proteins, including other heat shock proteins, only constitutive hsc70 was secreted in response to the high-cell density. Moreover, hsc70 secretion from cancer cells was generated by serum deprivation, whereas its cellular concentration did not change. Prevention of Hsc70 secretion by cath D overexpression was associated with the formation of multilayer cell cultures, thus indicating a loss of contact inhibition. In addition, we showed that supplementing the culture medium with purified hsc70 inhibited cell proliferation in the nanomolar range. Conversely, removal of this extracellular hsc70 from the medium by either retention on ADP-agarose or competition at the Hsc70 binding site restored cell proliferation. Hsc70 appears active in human breast cancer cells and hypersecreted by direct cath D inhibition. These results suggest a new role of this secreted hsc70 chaperone in cell proliferation that might account for the higher tumor growth of cancer cells overexpressing cath D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abercrombie M . (1979). Contact inhibition and malignancy. Nature 281: 259–262.

    Article  CAS  Google Scholar 

  • Abercrombie M, Heaysman JE . (1954). Observations on the social behaviour of cells in tissue culture. II. Monolayering of fibroblasts. Exp Cell Res 6: 293–306.

    Article  CAS  Google Scholar 

  • Agarraberes FA, Terlecky SR, Dice JF . (1997). An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137: 825–834.

    Article  CAS  Google Scholar 

  • Anagnostopoulou A, Vultur A, Arulanandam R, Cao J, Turkson J, Jove R et al. (2006). Differential effects of Stat3 inhibition in sparse vs confluent normal and breast cancer cells. Cancer Lett 242: 120–132.

    Article  CAS  Google Scholar 

  • Baldwin ET, Bhat TN, Gulnik S, Hosur MV, Sowder II RC, Cachau RE et al. (1993). Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design. Proc Natl Acad Sci USA 90: 6796–6800.

    Article  CAS  Google Scholar 

  • Barreto A, Gonzalez JM, Kabingu E, Asea A . (2003). Stress-induced release of Hsc70 from human tumors. Cell Immunol 222: 97–104.

    Article  CAS  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ . (1990). Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248: 850–854.

    Article  CAS  Google Scholar 

  • Bossard N, Descotes F, Bremond AG, Bobin Y, De Saint Hilaire P, Golfier F et al. (2003). Keeping data continuous when analyzing the prognostic impact of a tumor marker: an example with cathepsin D in breast cancer. Breast Cancer Res Treat 82: 47–59.

    Article  CAS  Google Scholar 

  • Brighty DW, Jassal SR . (2001). The synthetic peptide P-197 inhibits human T-cell leukemia virus type 1 envelope-mediated syncytium formation by a mechanism that is independent of Hsc70. J Virol 75: 10472–10478.

    Article  CAS  Google Scholar 

  • Brocchieri L, Conway de Macario E, Macario AJ . (2008). hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8: 19.

    Article  Google Scholar 

  • Chen S, Brown IR . (2007). Translocation of constitutively expressed heat shock protein Hsc70 to synapse-enriched areas of the cerebral cortex after hyperthermic stress. J Neurosci Res 85: 402–409.

    Article  CAS  Google Scholar 

  • Chiang HL, Dice JF . (1988). Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263: 6797–6805.

    CAS  Google Scholar 

  • Chiang HL, Terlecky SR, Plant CP, Dice JF . (1989). A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382–385.

    Article  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK . (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10: 86–103.

    Article  CAS  Google Scholar 

  • Ciocca DR, Fuqua SA, Lock-Lim S, Toft DO, Welch WJ, McGuire WL . (1992). Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res 52: 3648–3654.

    CAS  Google Scholar 

  • Ciocca DR, Rozados VR, Cuello Carrion FD, Gervasoni SI, Matar P, Scharovsky OG . (2003). Hsp25 and Hsp70 in rodent tumors treated with doxorubicin and lovastatin. Cell Stress Chaperones 8: 26–36.

    Article  CAS  Google Scholar 

  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z . (2005). Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118: 3631–3638.

    Article  CAS  Google Scholar 

  • Cohen LA, Tsuang J, Chan PC . (1974). Characteristics of rat normal mammary epithelial cells and dimetyhylbenzanthracene-induced mamary adenocarcinoma cells growth in monolayer culture. In Vitro 10: 51–62.

    Article  CAS  Google Scholar 

  • Dressel R, Grzeszik C, Kreiss M, Lindemann D, Herrmann T, Walter L et al. (2003). Differential effect of acute and permanent heat shock protein 70 overexpression in tumor cells on lysability by cytotoxic T lymphocytes. Cancer Res 63: 8212–8220.

    CAS  Google Scholar 

  • Dworniczak B, Mirault ME . (1987). Structure and expression of a human gene coding for a 71 kd heat shock ‘cognate’ protein. Nucleic Acids Res 15: 5181–5197.

    Article  CAS  Google Scholar 

  • Eagle H, Levine EM . (1967). Growth regulatory effects of cellular interaction. Nature 213: 1102–1106.

    Article  CAS  Google Scholar 

  • Elledge RM, Clark GM, Fuqua SA, Yu YY, Allred DC . (1994). p53 protein accumulation detected by five different antibodies: relationship to prognosis and heat shock protein 70 in breast cancer. Cancer Res 54: 3752–3757.

    CAS  Google Scholar 

  • Florin L, Becker KA, Sapp C, Lambert C, Sirma H, Müller M et al. (2004). J Virol 11: 5546–5553.

  • Fouchaq B, Benaroudj N, Ebel C, Ladjimi MM . (1999). Oligomerization of the 17-kDa peptide-binding domain of the molecular chaperone HSC70. Eur J Biochem 259: 379–384.

    Article  CAS  Google Scholar 

  • Garcia M, Derocq D, Pujol P, Rochefort H . (1990). Overexpression of transfected cathepsin D in transformed cells increases their malignant phenotype and metastatic potency. Oncogene 5: 1809–1814.

    CAS  Google Scholar 

  • Garcia M, Platet N, Liaudet E, Laurent V, Derocq D, Brouillet JP et al. (1996). Biological and clinical significance of cathepsin D in breast cancer metastasis. Stem Cells 14: 642–650.

    Article  CAS  Google Scholar 

  • Geminard C, Nault F, Johnstone RM, Vidal M . (2001). Characteristics of the interaction between Hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation. J Biol Chem 276: 9910–9916.

    Article  CAS  Google Scholar 

  • Glondu M, Liaudet-Coopman E, Derocq D, Platet N, Rochefort H, Garcia M . (2002). Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells. Oncogene 21: 5127–5134.

    Article  CAS  Google Scholar 

  • Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR et al. (2006). Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci USA 103: 5817–5822.

    Article  CAS  Google Scholar 

  • Hightower LE, Guidon Jr PT . (1989). Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138: 257–266.

    Article  CAS  Google Scholar 

  • Kao RH, Francia G, Poulsom R, Hanby AM, Hart IR . (2003). Application of differential display, with in situ hybridization verification, to microscopic samples of breast cancer tissue. Int J Exp Pathol 84: 207–212.

    Article  Google Scholar 

  • Lazaris A, Chatzigianni EB, Panoussopoulos D, Tzimas GN, Davaris PS, Golematis B . (1997). Proliferating cell nuclear antigen and heat shock protein 70 immunolocalization in invasive ductal breast cancer not otherwise specified. Breast Cancer Res Treat 43: 43–51.

    Article  Google Scholar 

  • Liaudet E, Derocq D, Rochefort H, Garcia M . (1995). Transfected cathepsin D stimulates high density cancer cell growth by inactivating secreted growth inhibitors. Cell Growth Differ 6: 1045–1052.

    CAS  Google Scholar 

  • Mambula SS, Calderwood SK . (2006). Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177: 7849–7857.

    Article  CAS  Google Scholar 

  • Mambula SS, Stevenson MA, Ogawa K, Calderwood SK . (2007). Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43: 168–175.

    Article  CAS  Google Scholar 

  • Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA . (2004). Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem 279: 25101–25111.

    Article  CAS  Google Scholar 

  • Melendez K, Wallen ES, Edwards BS, Mobarak CD, Bear DG, Moseley PL . (2006). Heat shock protein 70 and glycoprotein 96 are differentially expressed on the surface of malignant and nonmalignant breast cells. Cell Stress Chaperones 11: 334–342.

    Article  CAS  Google Scholar 

  • Metcalf P, Fusek M . (1993). Two crystal structures for cathepsin D: the lysosomal targeting signal and active site. Embo J 12: 1293–1302.

    Article  CAS  Google Scholar 

  • Morimoto RI . (1998). Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 3788–3796.

    Article  CAS  Google Scholar 

  • Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W et al. (1995). A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61: 272–279.

    Article  CAS  Google Scholar 

  • Munro S, Pelham HR . (1986). An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291–300.

    Article  CAS  Google Scholar 

  • Nylandsted J, Wick W, Hirt UA, Brand K, Rohde M, Leist M et al. (2002). Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res 62: 7139–7142.

    CAS  PubMed Central  Google Scholar 

  • O’Malley K, Mauron A, Barchas JD, Kedes L . (1985). Constitutively expressed rat mRNA encoding a 70-kilodalton heat-shock-like protein. Mol Cell Biol 5: 3476–3483.

    Article  Google Scholar 

  • Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M . (2005). Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19: 570–582.

    Article  CAS  Google Scholar 

  • Rothman JE, Schmid SL . (1986). Enzymatic recycling of clathrin from coated vesicles. Cell 46: 5–9.

    Article  CAS  Google Scholar 

  • Saito K, Dai Y, Ohtsuka K . (2005). Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp Cell Res 310: 229–236.

    Article  CAS  Google Scholar 

  • Sorger PK, Pelham HR . (1987). Cloning and expression of a gene encoding hsc73, the major hsp70-like protein in unstressed rat cells. Embo J 6: 993–998.

    Article  CAS  Google Scholar 

  • Soulier S, Vilotte JL, L’Huillier PJ, Mercier JC . (1996). Developmental regulation of murine integrin beta 1 subunit- and Hsc73-encoding genes in mammary gland: sequence of a new mouse Hsc73 cDNA. Gene 172: 285–289.

    Article  CAS  Google Scholar 

  • Srivastava PK . (2005). Immunotherapy for human cancer using heat shock protein-peptide complexes. Curr Oncol Rep 7: 104–108.

    Article  CAS  Google Scholar 

  • Terlecky SR, Dice JF . (1993). Polypeptide import and degradation by isolated lysosomes. J Biol Chem 268: 23490–23495.

    CAS  Google Scholar 

  • Thanner F, Sutterlin MW, Kapp M, Rieger L, Kristen P, Dietl J et al. (2003). Heat-shock protein 70 as a prognostic marker in node-negative breast cancer. Anticancer Res 23: 1057–1062.

    CAS  Google Scholar 

  • Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P et al. (1999). Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147: 599–610.

    Article  CAS  Google Scholar 

  • Torronteguy C, Frasson A, Zerwes F, Winnikov E, da Silva VD, Menoret A et al. (2006). Inducible heat shock protein 70 expression as a potential predictive marker of metastasis in breast tumors. Cell Stress Chaperones 11: 34–43.

    Article  CAS  Google Scholar 

  • Tsukahara F, Maru Y . (2004). Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70. J Biol Chem 279: 8867–8872.

    Article  CAS  Google Scholar 

  • Tsukahara F, Yoshioka T, Muraki T . (2000). Molecular and functional characterization of HSC54, a novel variant of human heat-shock cognate protein 70. Mol Pharmacol 58: 1257–1263.

    Article  CAS  Google Scholar 

  • Tutar Y, Song Y, Masison DC . (2006). Primate chaperones Hsc70 (constitutive) and Hsp70 (induced) differ functionally in supporting growth and prion propagation in Saccharomyces cerevisiae. Genetics 172: 851–861.

    Article  CAS  Google Scholar 

  • Tytell M . (2005). Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int J Hyperthermia 21: 445–455.

    Article  CAS  Google Scholar 

  • Udono H, Srivastava PK . (1993). Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178: 1391–1396.

    Article  CAS  Google Scholar 

  • Vargas-Roig LM, Fanelli MA, Lopez LA, Gago FE, Tello O, Aznar JC et al. (1997). Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect Prev 21: 441–451.

    CAS  Google Scholar 

  • Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR . (1998). Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79: 468–475.

    Article  CAS  Google Scholar 

  • Zou N, Ao L, Cleveland Jr JC, Yang X, Su X, Cai GY et al. (2008). Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. Am J Physiol Heart Circ Physiol 294: H2805–H2813.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jean Derancourt, (Centre de Recherches de Biochimie Macromoleculaire du CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France) for peptide fragments analysis. The authors thank the Centre Régional d’Imagerie Cellulaire (Montpellier—France) for access to the scanning microscopy facilities. This work was supported by the Institut National de la Santé et de la Recherche Médicale, the Association pour la Recherche sur le Cancer, the Ligue contre le cancer, Comité de l’Hérault (fellowship to MM), and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Garcia.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nirdé, P., Derocq, D., Maynadier, M. et al. Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene 29, 117–127 (2010). https://doi.org/10.1038/onc.2009.311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.311

Keywords

This article is cited by

Search

Quick links