Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Caspase-2: killer, savior and safeguard—emerging versatile roles for an ill-defined caspase

Abstract

Despite the early discovery of caspase-2, its physiological function has long remained an enigma. A number of recent publications now suggest not just one, but multiple functions, including roles in apoptosis, DNA repair and tumor suppression. How can one enzyme have so many talents? Considering the diversity of interaction partners and the specific mode of pro-apoptotic action proposed in these studies, caspase-2 might in fact represent a primordial protease serving numerous pathways, established before the advent of a more elaborate functionally diversified caspases system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Arama E, Agapite J, Steller H . (2003). Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4: 687–697.

    Article  CAS  Google Scholar 

  • Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A et al (1998). Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12: 1304–1314.

    Article  CAS  Google Scholar 

  • Braga M, Sinha Hikim AP, Datta S, Ferrini MG, Brown D, Kovacheva EL et al. (2008). Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 13: 822–832.

    Article  CAS  Google Scholar 

  • De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O et al. (2002). Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100: 1310–1317.

    Article  CAS  Google Scholar 

  • Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT et al. (2008). Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 32: 540–553.

    Article  CAS  Google Scholar 

  • Duan H, Dixit VM . (1997). RAIDD is a new ‘death’ adaptor molecule. Nature 385: 86–89.

    Article  CAS  Google Scholar 

  • Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ et al. (2008). Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 183: 681–696.

    Article  CAS  Google Scholar 

  • Ho LH, Taylor R, Dorstyn L, Cakouros D, Bouillet P, Kumar S . (2009). A tumor suppressor function for caspase-2. Proc Natl Acad Sci USA 106: 5336–5341.

    Article  CAS  Google Scholar 

  • Krumschnabel G, Sohm B, Bock F, Manzl C, Villunger A . (2009). The enigma of caspase-2: the laymen's view. Cell Death Differ 16: 195–207.

    Article  CAS  Google Scholar 

  • Kumar S, Tomooka Y, Noda M . (1992). Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 185: 1155–1161.

    Article  CAS  Google Scholar 

  • Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P . (2007). Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14: 44–55.

    Article  CAS  Google Scholar 

  • Lavrik IN, Golks A, Baumann S, Krammer PH . (2006). Caspase-2 is activated at the CD95 death-inducing signaling complex in the course of CD95-induced apoptosis. Blood 108: 559–565.

    Article  CAS  Google Scholar 

  • Li J, Yuan J . (2008). Caspases in apoptosis and beyond. Oncogene 27: 6194–6206.

    Article  CAS  Google Scholar 

  • Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA et al. (2000). Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149: 603–612.

    Article  CAS  Google Scholar 

  • Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC et al. (2005). Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123: 89–103.

    Article  CAS  Google Scholar 

  • Olsson M, Vakifahmetoglu H, Abruzzo PM, Hogstrand K, Grandien A, Zhivotovsky B . (2009). DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene 28: 1949–1959.

    Article  CAS  Google Scholar 

  • Samraj AK, Sohn D, Schulze-Osthoff K, Schmitz I . (2007). Loss of caspase-9 reveals its essential role for caspase-2 activation and mitochondrial membrane depolarization. Mol Biol Cell 18: 84–93.

    Article  CAS  Google Scholar 

  • Scott CL, Schuler M, Marsden VS, Egle A, Pellegrini M, Nesic D et al. (2004). Apaf-1 and caspase-9 do not act as tumor suppressors in myc-induced lymphomagenesis or mouse embryo fibroblast transformation. J Cell Biol 164: 89–96.

    Article  CAS  Google Scholar 

  • Shi M, Vivian CJ, Lee KJ, Ge C, Morotomi-Yano K, Manzl C et al. (2009). DNA-PKcs-PIDDosome: a nuclear caspase-2-activating complex with role in G2/M checkpoint maintenance. Cell 136: 508–520.

    Article  CAS  Google Scholar 

  • Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R et al. (2008). Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133: 864–877.

    Article  CAS  Google Scholar 

  • Tinel A, Tschopp J . (2004). The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304: 843–846.

    Article  CAS  Google Scholar 

  • Yi CH, Yuan J . (2009). The Jekyll and Hyde functions of caspases. Dev Cell 16: 21–34.

    Article  CAS  Google Scholar 

  • Zhang Y, Padalecki SS, Chaudhuri AR, De Waal E, Goins BA, Grubbs B et al. (2007). Caspase-2 deficiency enhances aging-related traits in mice. Mech Ageing Dev 128: 213–221.

    Article  CAS  Google Scholar 

  • Zhivotovsky B, Orrenius S . (2006). Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 27: 1939–1945.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work in our laboratory is supported by fellowships and grants from the Austrian Science Fund (Y212-B13, SFB021, MCBO), EU-FP6 (ApopTrain) and the Tyrolean Science Fund (TWF). We apologize to the many scientists in this field whose excellent research was not cited but was only referred to indirectly through reviews.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Krumschnabel or A Villunger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krumschnabel, G., Manzl, C. & Villunger, A. Caspase-2: killer, savior and safeguard—emerging versatile roles for an ill-defined caspase. Oncogene 28, 3093–3096 (2009). https://doi.org/10.1038/onc.2009.173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.173

Keywords

This article is cited by

Search

Quick links