Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Artemis is a negative regulator of p53 in response to oxidative stress

Abstract

Artemis is a multifunctional phospho-protein with roles in V(D)J recombination, repair of double-strand breaks by nonhomologous end-joining and regulation of cell-cycle checkpoints after DNA damage. Here, we describe a new function of Artemis as a negative regulator of p53 in response to oxidative stress in both primary cells and cancer cell lines. We show that depletion of Artemis under typical culture conditions (21% oxygen) leads to a spontaneous phosphorylation and stabilization of p53, and resulting cellular G1 arrest and apoptosis. These effects are suppressed by co-depletion of DNA-PKcs, but not ATM, indicating that Artemis is an inhibitor of DNA–PKcs-mediated stabilization of p53. Culturing of cellsat 3% oxygen or treatment with an antioxidant abrogated p53 stabilization, indicating that oxidative stress is the responsible cellular stimulus. Treatment with ionizing radiation or hydrogen peroxide did not cause activation of this signaling pathway, whereas inhibitors of mitochondrial electron transport were effective in reducing its activation. In addition, we show that p53-inducible genes involved in reducing reactive oxygen species are upregulated by Artemis depletion. These findings indicate that Artemis and DNA-PKcs participate in a new, signaling pathway to modulate p53 function in response to oxidative stress produced by mitochondrial respiration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anwar A, Dehn D, Siegel D, Kepa JK, Tang LJ, Pietenpol JA et al. (2003). Interaction of human NAD(P)H:quinone oxidoreductase 1 (NQO1) with the tumor suppressor protein p53 in cells and cell-free systems. J Biol Chem 278: 10368–10373.

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Lotem J, Cohen B, Sachs L, Shaul Y . (2001). Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc Natl Acad Sci USA 98: 1188–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asher G, Lotem J, Kama R, Sachs L, Shaul Y . (2002). NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA 99: 3099–3104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126: 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Vousden KH . (2007). p53: new roles in metabolism. Trends Cell Biol 17: 286–291.

    Article  CAS  PubMed  Google Scholar 

  • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM . (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304: 596–600.

    Article  CAS  PubMed  Google Scholar 

  • Chang NS, Doherty J, Ensign A, Lewis J, Heath J, Schultz L et al. (2003). Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem Pharmacol 66: 1347–1354.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Morio T, Minegishi Y, Nakada S, Nagasawa M, Komatsu K et al. (2005). Ataxia-telangiectasia-mutated dependent phosphorylation of Artemis in response to DNA damage. Cancer Sci 96: 134–141.

    Article  CAS  PubMed  Google Scholar 

  • Geng L, Zhang X, Zheng S, Legerski RJ . (2007). Artemis links ATM to G2/M checkpoint recovery via regulation of Cdk1-cyclin B. Mol Cell Biol 27: 2625–2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzy RD, Schumacker PT . (2006). Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91: 807–819.

    Article  CAS  PubMed  Google Scholar 

  • Karawajew L, Rhein P, Czerwony G, Ludwig WD . (2005). Stress-induced activation of the p53 tumor suppressor in leukemia cells and normal lymphocytes requires mitochondrial activity and reactive oxygen species. Blood 105: 4767–4775.

    Article  CAS  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G et al. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Res 65: 177–185.

    CAS  PubMed  Google Scholar 

  • Ma Y, Pannicke U, Lu H, Niewolik D, Schwarz K, Lieber MR . (2005). The DNA-dependent protein kinase catalytic subunit phosphorylation sites in human Artemis. J Biol Chem 280: 33839–33846.

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Pannicke U, Schwarz K, Lieber MR . (2002). Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108: 781–794.

    Article  CAS  PubMed  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al. (2006). p53 regulates mitochondrial respiration. Science 312: 1650–1653.

    Article  CAS  PubMed  Google Scholar 

  • Mayer M, Noble M . (1994). N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci USA 91: 7496–7500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meek K, Gupta S, Ramsden DA, Lees-Miller SP . (2004). The DNA-dependent protein kinase: the director at the end. Immunol Rev 200: 132–141.

    Article  CAS  PubMed  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G . (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378: 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F et al. (2001). Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Moshous D, Li L, Chasseval R, Philippe N, Jabado N, Cowan MJ et al. (2000). A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p. Hum Mol Genet 9: 583–588.

    Article  CAS  PubMed  Google Scholar 

  • Poinsignon C, de Chasseval R, Soubeyrand S, Moshous D, Fischer A, Hache RJ et al. (2004). Phosphorylation of Artemis following irradiation-induced DNA damage. Eur J Immunol 34: 3146–3155.

    Article  CAS  PubMed  Google Scholar 

  • Punj V, Chakrabarty AM . (2003). Redox proteins in mammalian cell death: an evolutionarily conserved function in mitochondria and prokaryotes. Cell Microbiol 5: 225–231.

    Article  CAS  PubMed  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ et al. (2004). A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16: 715–724.

    Article  CAS  PubMed  Google Scholar 

  • Rooney S, Sekiguchi J, Whitlow S, Eckersdorff M, Manis JP, Lee C et al. (2004). Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci USA 101: 2410–2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rooney S, Sekiguchi J, Zhu C, Cheng HL, Manis J, Whitlow S et al. (2002). Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell 10: 1379–1390.

    Article  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT . (1998). Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res 58: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–505.

    Article  CAS  PubMed  Google Scholar 

  • Seedorf K, Oltersdorf T, Krammer G, Rowekamp W . (1987). Identification of early proteins of the human papilloma viruses type 16 (HPV 16) and type 18 (HPV 18) in cervical carcinoma cells. EMBO J 6: 139–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C . (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Sohn D, Essmann F, Schulze-Osthoff K, Janicke RU . (2006). p21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation. Cancer Res 66: 11254–11262.

    Article  CAS  PubMed  Google Scholar 

  • Soutoglou E, Misteli T . (2008). Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320: 1507–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Wittmack EK, Jorgensen TJ . (2000). p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer Res 60: 679–684.

    CAS  PubMed  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B . (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  • Wang J, Pluth JM, Cooper PK, Cowan MJ, Chen DJ, Yannone SM . (2005). Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair (Amst) 4: 556–570.

    Article  CAS  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445: 656–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B . (2000). Role of BAX in the apoptotic response to anticancer agents. Science 290: 989–992.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ . (2004). Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 24: 9207–9220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G Lozano for helpful discussions of the paper. This work was supported by National Cancer Institute grant CA096574 (RJL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Legerski.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhu, Y., Geng, L. et al. Artemis is a negative regulator of p53 in response to oxidative stress. Oncogene 28, 2196–2204 (2009). https://doi.org/10.1038/onc.2009.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.100

Keywords

This article is cited by

Search

Quick links