Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Activated c-Abl tyrosine kinase in malignant solid tumors

Abstract

Mutant forms of the c-ABL gene are well known to be involved in hematopoietic malignancies such as chronic myeloid leukemia (CML). CML patients possess a fused BCR-ABL gene that activates the Abl tyrosine kinase domain within Bcr-Abl. In general fusion proteins that cause oligomerization of Abl lead to activation of its tyrosine kinase activity. In this review, we highlight recent discoveries indicating that the activated c-Abl tyrosine kinase, not as a fusion protein, plays an important role in malignant solid tumors of lung and breast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Buchdunger E, Zimmerman J, Mett H, Meyer T, Muller M, Druker B et al. (1996). Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56: 100–104.

    CAS  PubMed  Google Scholar 

  • Bunn P, Franklin W . (2002). Epidermal growth factor receptor expression, signal pathway, and inhibitors in non-small cell lung cancer. Semin Oncol 29 (5 Suppl 14): 38–44.

    Article  CAS  PubMed  Google Scholar 

  • Dowell J, Minna J . (2005). Chasing mutations in the epidermal growth factor in lung cancer. N Engl J Med 352: 830–832.

    Article  CAS  PubMed  Google Scholar 

  • Girard L, Zochbauer-Muller S, Virmani A, Gazdar A, Minna J . (2000). Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 60: 4894–4906.

    CAS  PubMed  Google Scholar 

  • Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuryian J et al. (2003). A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112: 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Ito I, Ji L, Tanaka F, Saito Y, Gopalan B, Branch C et al. (2004). Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther 11: 1–7.

    Article  Google Scholar 

  • Ji L, Nishizaki M, Gao B, Burbee D, Kondo M, Kamibayashi C et al. (2002). Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res 62: 2715–2720.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo M, Ji L, Kamibayashi C, Tomizawa Y, Randle D, Sekido Y et al. (2001). Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene 20: 6258–6262.

    Article  CAS  PubMed  Google Scholar 

  • LeRoith D, Werner H, Beitner-Johnson D, Roberts C . (1995). Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16: 143–163.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Sun T, Ji L, Deng W, Roth J, Minna J et al. (2007). Oncogenic activation of c-Abl in non-small cell lung cancer cells lacking FUS1 expression: inhibition of c-Abl by the tumor suppressor gene product Fus1. Oncogene 26: 6989–6996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Sun T, Lin J, Minna J, Roth J, Arlinghaus R . (2005). Activated c-Abl in FUS1 haploinsufficient non-small cell lung carcinoma. 96th Annual American Association for Cancer Research (Abstract 2877).

  • Ling X, Ma G, Sun T, Liu J, Arlinghaus R . (2003). Bcr and Abl interaction: oncogenic activation of c-Abl by sequestering Bcr. Cancer Res 63: 298–303.

    CAS  PubMed  Google Scholar 

  • Liu J, Wu Y, Arlinghaus R . (1996). Sequences within the first exon of BCR inhibit the activated tyrosine kinases of c-Abl and the Bcr-Abl oncoprotein. Cancer Res 56: 5120–5124.

    CAS  PubMed  Google Scholar 

  • Ma Z, Dong A, Kong M, Qian J . (2007). Silencing of the type 1 insulin-like growth factor receptor increases the sensitivity to apotosis and inhibits invasion in human lung adenocarcinoma A549 cells. Cell Mol Biol Lett 12: 556–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller C, Chen G, Gharib T, Wang H, Thomas D, Misek D et al. (2003). Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 22: 7950–7957.

    Article  PubMed  Google Scholar 

  • Negri T, Casieri P, Miselli F, Orsenigo M, Piacenza C, Stacchiotti S et al. (2007). Evidence for PDGFR-α, PDGFR-β and KIT deregulation in an NSCLC patient. Br J Cancer 96: 180–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osherov N, Levitzki A . (1994). Epidermal-growth-factor-dependent activation of the Src-family kinases. Eur J Biochem 225: 1047–1053.

    Article  CAS  PubMed  Google Scholar 

  • Pendergast A . (2002). The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85: 51–100.

    Article  CAS  PubMed  Google Scholar 

  • Plattner R, Kadlec L, DeMali K, Kazlauskas A, Pendergast A . (1999). c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev 13: 2400–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plattner R, Pendergast AM . (2003). Activation and signaling of the Abl tyrosine kinase: bidirectional link with phosphoinositide signaling. Cell Cycle 2: 273–274.

    Article  CAS  PubMed  Google Scholar 

  • Pluk H, Dorey K, Superti-Furga G . (2002). Autoinhibition of c-Abl. Cell 108: 247–259.

    Article  CAS  PubMed  Google Scholar 

  • Prudkin L, Behrens C, Liu D, Zhou X, Ozburn N, Bekele B et al. (2008). Loss and reduction of Fus1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Hum Cancer Biol 14: 41–47.

    CAS  Google Scholar 

  • Ross S, Fletcher A . (1998). The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 16: 413–428.

    Article  CAS  PubMed  Google Scholar 

  • Sirvent A, Boureux A, Simon V, Leroy C, Roche S . (2007). The tyrosine kinase Abl is required for Src-transforming activity in mouse fibroblasts and human breast cancer cell lines. Oncogene 26: 7313–7323.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan D, Plattner R . (2006). Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res 66: 5648–5655.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan D, Sims J, Plattner R . (2008). Aggressive breast cancer cells are dependent on activated Abl kinases for proliferation, anchorage-independent growth and survival. Oncogene 27: 1095–1105.

    Article  CAS  PubMed  Google Scholar 

  • Taagepera S, McDonald D, Loeb J, Whitaker L, McElroy A, Wang J et al. (1998). Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA 95: 7457–7462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanos B, Pendergast AM . (2006). Abl tyrosine kinase regulates endocytosis of the epidermal growth factor receptor. J Biol Chem 28: 32714–32723.

    Article  Google Scholar 

  • Uno F, Sasaki J, Nishizaki M, Carboni G, Xu K, Atkinson E et al. (2004). Myristoylation of the fus1 protein is required for tumor suppression in human lung cancer cells. Cancer Res 64: 2969–2976.

    Article  CAS  PubMed  Google Scholar 

  • U.S. Cancer Statistics Working Group (2004). U.S. Cancer Statistics: 2001 Incidence and Mortality. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute: Atlanta.

  • Vlahovic G, Rabbani Z, Herndon II J, Dewhirst M, Vujaskovic Z . (2006). Treatment with imatinib in NSCLC is associated with decrease if phosphorylated PDGFR-β and VEGF expression, decrease in interstitial fluid pressure and improvement of oxygenation. Br J Cancer 95: 1013–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J . (2000). Regulation of cell death by the Abl tyrosine kinase. Oncogene 19: 5643–5650.

    Article  CAS  PubMed  Google Scholar 

  • Wen S, Van Etten R . (1997). The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev 11: 2456–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodring P, Hunter T, Wang J . (2003). Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Science 116 (Part 13): 2613–2626.

    Article  CAS  PubMed  Google Scholar 

  • Zabarovsky E, Lerman M, Minna J . (2002). Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21: 6915–6935.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Gao W, Turner S, Ducatman B . (2003). Gleevec (STI-571) inhibits lung cancer cell growth (A549) and potentiates the cisplatin effect in vitro. Mol Cancer 2: 1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Arlinghaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Arlinghaus, R. Activated c-Abl tyrosine kinase in malignant solid tumors. Oncogene 27, 4385–4391 (2008). https://doi.org/10.1038/onc.2008.86

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.86

Keywords

This article is cited by

Search

Quick links