Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The transcription-repression domain of the adenovirus E1A oncoprotein targets p300 at the promoter

Abstract

Extensive mutational/functional analysis of the transcription-repression domain encoded in the N-terminal 80 amino acids of the adenovirus E1A 243R oncoprotein suggests a model for the molecular mechanism of E1A repression: E1A accesses transcriptional co-activators such as p300 on specific promoters and then interacts with TBP to disrupt the TBP–TATA complex. In support of this model, as reported here, a basal core promoter activated by tethering p300 is repressible by E1A at the promoter level as shown by chromatin immunoprecipitation (ChIP) analysis. Sequestration of p300 by E1A does not play a significant role, as indicated by dose-response measurements. Furthermore, when the core promoter is transcriptionally activated by tethering activation domains of several transcription factors that can recruit p300 (p65, MyoD, cMyb and TFE3), transcription is repressible by E1A. However, when the core promoter is activated by factors not known to recruit p300 (USF1 and USF2), transcription is resistant to E1A repression. Finally, tethering p300 to the non-repressible adenovirus major late promoter (MLP) renders it repressible by E1A. ChIP analysis shows that E1A occupies the repressed MLP. These findings provide support for the hypothesis that p300 can serve as a scaffold for the E1A repression domain to access specific cellular gene promoters involved in growth regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Berk AJ . (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24: 7673–7685.

    Article  CAS  PubMed  Google Scholar 

  • Boyd J, Loewenstein PM, Tang Q, Yu L, Green M . (2002). The adenovirus 2 E1A N-terminal domain sequence requirements for repression of transcription in vitro and in vivo correlate with those required for E1A interference with TBP/TATA complex formation. J Virol 76: 1461–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgers WA, Blanchon L, Pradhan S, De Launoit Y, Kouzarides T, Fuks F . (2007). Viral oncoproteins target the DNA methyltransferases. Oncogene 26: 1650–1655.

    Article  CAS  PubMed  Google Scholar 

  • Carthew RW, Chodosh LA, Sharp P . (1985). An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43: 439–448.

    Article  CAS  PubMed  Google Scholar 

  • Chan HM, La Thangue NB . (2001). p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114: 2363–2373.

    CAS  PubMed  Google Scholar 

  • Chinnadurai G (ed). (2006). CtBP Family Proteins: Unique Transcriptional Regulators in the Nucleus with Diverse Cytosolic Functions. Springer-Eurekah Bioscience, pp 1–17.

  • Dorris DR, Struhl K . (2000). Artificial recruitment of TFIID, but not RNA polymerase II holoenzyme, activates transcription in mammalian cells. Mol Cell Biol 12: 4350–4358.

    Article  Google Scholar 

  • Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio J, Lawrence JB et al. (1994). Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8: 869–884.

    Article  CAS  PubMed  Google Scholar 

  • Frisch SM, Mymryk JS . (2002). Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 3: 441–452.

    Article  CAS  PubMed  Google Scholar 

  • Gallimore PH, Turnell AS . (2001). Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 20: 7824–7835.

    Article  CAS  PubMed  Google Scholar 

  • Goodman RH, Smolik S . (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev 14: 1553–1557.

    CAS  PubMed  Google Scholar 

  • Gorman CM, Moffat LF, Howard BH . (1982). Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2: 1044–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green M, Loewenstein PM, Pusztai R, Symington JS . (1988). An adenovirus E1A protein domain activates transcription in vivo and in vitro in the absence of protein synthesis. Cell 53: 921–926.

    Article  CAS  PubMed  Google Scholar 

  • Green M, Panesar NK, Loewenstein PM . (2008). Adenovirus E1A proteins are closely associated with chromatin in productively infected and transformed cells. Virology 371: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Lavrrar JL, Farnham PJ . (2004). The use of transient chromatin immunoprecipitation assays to test models for E2F1-specific transcriptional activation. J Biol Chem 44: 46343–46349.

    Article  Google Scholar 

  • Lillie JW, Loewenstein PM, Green MR, Green M . (1987). Functional domains of adenovirus type 5 E1a proteins. Cell 50: 1091–1100.

    Article  CAS  PubMed  Google Scholar 

  • Loewenstein PM, Arackal S, Green M . (2006). Mutational and functional analysis of an essential sub-domain of the adenovirus E1A N-terminal transcription repression domain. Virology 351: 312–321.

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Sawadogo M . (1996). Antiproliferative properties of the USF family of helix-loop-helix transcription factors. Proc Natl Acad Sci USA 93: 1308–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran E . (1993). DNA tumor virus transforming proteins and the cell cycle. Curr Opin Genet Dev 3: 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Parker SF, Felzien LK, Perkins ND, Imperiale MJ, Nabel GJ . (1997). Distinct domains of adenovirus E1A interact with specific cellular factors to differentially modulate human immunodeficiency virus transcription. J Virol 71: 2004–2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ . (1997). Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275: 523–527.

    Article  CAS  PubMed  Google Scholar 

  • Postigo AA, Dean DC . (1999a). ZEB represses transcription through interaction with corepressor CtBP. Proc Natl Acad Sc USA 96: 6683–6688.

    Article  CAS  Google Scholar 

  • Postigo AA, Dean DC . (1999b). Independent repressor domains in ZEB regulate muscle and T-cell differentiation. Mol Cell Biol 19: 7961–7971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qyang Y, Luo X, Lu T, Ismail PM, Krylov D, Vinson C . et al. (1999). Cell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation. Mol Cell Biol 19: 1508–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasti M, Grand RJ, Mymryk JS, Gallimore PH, Turnell AS . (2005). Recruitment of CBP/p300, TATA-binding protein, and S8 to distinct regions at the N terminus of adenovirus E1A. J Virol 79: 5594–5605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawadogo M, Roeder RG . (1985). Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43: 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Shenk T . (2001). Adenoviridae: The viruses and their replication. In: Fundamental Virology 1053–1088. Publisher: Lippincott, Williams and Wilkins: New York, NY.

    Google Scholar 

  • Song C-Z, Loewenstein PM, Green M . (1995b). Repression in vitro, by human adenovirus E1A protein domains, of basal or Tat-activated transcription of the human immunodeficiency virus type 1 long terminal repeat. J Virol 69: 2907–2911.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song C-Z, Loewenstein PM, Toth K, Tang Q, Nishikawa A, Green M . (1997). The adenovirus E1A repression domain disrupts the interaction between the TATA binding protein and the TATA box in a manner reversible by TFIIB. Mol Cell Biol 17: 2186–2193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C-Z, Loewenstein PM, Toth K, Green M . (1995c). TFIID is a direct functional target of the adenovirus E1A transcription-repression domain. Proc Natl Acad Sci USA 92: 10330–10333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C-Z, Tierney CJ, Loewenstein PM, Pusztai R, Symington JS, Tang Q et al. (1995a). Transcriptional repression by human adenovirus E1A N-terminus/conserved domain 1 polypeptides in vivo and in vitro in the absence of protein synthesis. J Biol Chem 40: 23263–23267.

    Article  Google Scholar 

  • Taatjes DJ, Marr MT, Tjian R . (2004). Regulatory diversity among metazoan co-activator complexes. Nat Rev Mol Cell Biol 5: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Rayman JB, Dynlacht BD . (2000). Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 14: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webster KA, Muscat GE, Kedes L . (1988). Adenovirus E1A products suppress myogenic differentiation and inhibit transcription from muscle-specific promoters. Nature 332: 553–557.

    Article  CAS  PubMed  Google Scholar 

  • Weilbaecher KN, Motyckova B, Huber WE, Takemoto CM, Hemesath TJ, Xu Y et al. (2001). Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf (mi/mi) mice. Mol Cell 8: 749–758.

    Article  CAS  PubMed  Google Scholar 

  • Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S, Dean DC . (1995). Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375: 812–815.

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Condorelli G, Caruso M, Felsani A, Giordano A . (1996). Human p300 protein is a coactivator for the transcription factor MyoD. J Biol Chem 271: 9009–9013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Steve Weintraub, Douglas Dean, Antonio Postigo, Antonio Giordano, Michle Sawadogo and Kevin Struhl for the plasmid stocks. We also thank Steve Weintraub and Ling Zhao for critical reading of the manuscript and Carolyn Mulhall for valuable editorial assistance. This work was supported by Research Career Award AI-04739 and Public Health Service Grant CA29561 to MG from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, M., Panesar, N. & Loewenstein, P. The transcription-repression domain of the adenovirus E1A oncoprotein targets p300 at the promoter. Oncogene 27, 4446–4455 (2008). https://doi.org/10.1038/onc.2008.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.85

Keywords

This article is cited by

Search

Quick links