Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RETRACTED ARTICLE: Cyclin-dependent kinase 4/6 activity is a critical determinant of pre-replication complex assembly

This article was retracted on 22 March 2023

This article has been updated

Abstract

Cyclin-dependent kinases (CDKs) are important in regulating cell cycle transitions, particularly in coordinating DNA replication. Although the role of CDK2 activity on the replication apparatus has been extensively studied, the role of CDK4/6 in DNA replication control is less understood. Through targeted inhibition of CDK4/6 activity, we demonstrate that CDK4/6 kinase activity promotes cdc6 and cdt1 expression, and pre-replication complex (pre-RC) assembly in cycling cells. Conversely, CDK2 inhibition had no effect on the pre-RC assembly. The inhibition of pre-RC assembly is dependent on a functional retinoblastoma (RB) protein, which mediates downstream effects. As such, CDK4/6 inhibition has minimal effect on the replication apparatus in the absence of RB. The requirement of CDK4/6 was further interrogated using cells lacking D-type cyclins, in which replication complexes form normally, and correspondingly CDK4/6 inhibition had no effect on cell cycle or replication control. However, in the absence of D-type cyclins, CDK2 inhibition resulted in the attenuation of cdc6 and cdt1 levels, suggesting overlapping roles for CDK4/6 and CDK2 in regulating replication protein activity. Finally, CDK4/6 inhibition prevented the accumulation of cdc6 and cdt1 as cells progressed from mitosis through the subsequent G1. Combined, these studies indicate that CDK4/6 activity is important in regulating the expression of these critical mediators of DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

References

  • Aggarwal P, Lessie MD, Lin DI, Pontano L, Gladden AB, Nuskey B et al. (2007). Nuclear accumulation of cyclin D1 during S phase inhibits Cu14-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev 21: 2908–2922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angus SP, Mayhew CN, Solomon DA, Braden WA, Markey MP, Okuno Y et al. (2004). RB reversibly inhibits DNA replication via two temporally distinct mechanisms. Mol Cell Biol 24: 5404–5420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartek J, Bartkova J, Lukas J . (1997). The retinoblastoma protein pathway in cell cycle control and cancer. Exp Cell Res 237: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Lukas J, Bartek J . (1997). Aberrations of the G1- and G1/S-regulating genes in human cancer. Prog Cell Cycle Res 3: 211–220.

    Article  CAS  PubMed  Google Scholar 

  • Bell SP, Dutta A . (2002). DNA replication in eukaryotic cells. Annu Rev Biochem 71: 333–374.

    Article  CAS  PubMed  Google Scholar 

  • Blow JJ, Hodgson B . (2002). Replication licensing—defining the proliferative state? Trends Cell Biol 12: 72–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braden WA, Lenihan JM, Lan Z, Luce KS, Zagorski W, Bosco E et al. (2006). Distinct action of the retinoblastoma pathway on the DNA replication machinery defines specific roles for cyclin-dependent kinase complexes in prereplication complex assembly and S-phase progression. Mol Cell Biol 26: 7667–7681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broceno C, Wilkie S, Mittnacht S . (2002). RB activation defect in tumor cell lines. Proc Natl Acad Sci USA 99: 14200–14205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coverley D, Laman H, Laskey RA . (2002). Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat Cell Biol 4: 523–528.

    Article  CAS  PubMed  Google Scholar 

  • Dahmann C, Diffley JF, Nasmyth KA . (1995). S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol 5: 1257–1269.

    Article  CAS  PubMed  Google Scholar 

  • Diehl JA . (2002). Cycling to cancer with cyclin D1. Cancer Biol Ther 1: 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Diffley JF . (1994). Eukaryotic DNA replication. Curr Opin Cell Biol 6: 368–372.

    Article  CAS  PubMed  Google Scholar 

  • Diffley JF . (2004). Regulation of early events in chromosome replication. Curr Biol 14: R778–R786.

    Article  CAS  PubMed  Google Scholar 

  • Diffley JF, Labib K . (2002). The chromosome replication cycle. J Cell Sci 115: 869–872.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova DS, Prokhorova TA, Blow JJ, Todorov IT, Gilbert DM . (2002). Mammalian nuclei become licensed for DNA replication during late telophase. J Cell Sci 115: 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova DS, Todorov IT, Melendy T, Gilbert DM . (1999). Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. J Cell Biol 146: 709–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta A, Bell SP . (1997). Initiation of DNA replication in eukaryotic cells. Annu Rev Cell Dev Biol 13: 293–332.

    Article  CAS  PubMed  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  • Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI . (2004). Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 165: 789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E et al. (2004). Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3: 1427–1438.

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Kiyono T, Hayashi Y, Ishibashi M . (1996). hCDC47, a human member of the MCM family. Dissociation of the nucleus-bound form during S phase. J Biol Chem 271: 4349–4354.

    Article  CAS  PubMed  Google Scholar 

  • Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD et al. (2007). Kinase-independent function of cyclin E. Mol Cell 25: 127–139.

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Stacey DW, Hitomi M . (2002). Post-transcriptional regulation of cyclin D1 expression during G2 phase. Oncogene 21: 7545–7556.

    Article  CAS  PubMed  Google Scholar 

  • Hateboer G, Wobst A, Petersen BO, Le Cam L, Vigo E, Sardet C et al. (1998). Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F. Mol Cell Biol 18: 6679–6697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua XH, Yan H, Newport J . (1997). A role for Cdk2 kinase in negatively regulating DNA replication during S phase of the cell cycle. J Cell Biol 137: 183–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang HC, Clurman BE . (2005). Cyclin E in normal and neoplastic cell cycles. Oncogene 24: 2776–2786.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen KE, Diehl JA, Haiman CA, Knudsen ES . (2006). Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25: 1620–1628.

    Article  CAS  PubMed  Google Scholar 

  • Koff A, Cross F, Fisher A, Schumacher J, Leguellec K, Philippe M et al. (1991). Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66: 1217–1228.

    Article  CAS  PubMed  Google Scholar 

  • Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S et al. (1992). Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257: 1689–1694.

    Article  CAS  PubMed  Google Scholar 

  • Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E et al. (2004). Mouse development and cell proliferation in the absence of D-cyclins. Cell 118: 477–491.

    Article  CAS  PubMed  Google Scholar 

  • Labib K, Kearsey SE, Diffley JF . (2001). MCM2-7 proteins are essential components of prereplicative complexes that accumulate cooperatively in the nucleus during G1-phase and are required to establish, but not maintain, the S-phase checkpoint. Mol Biol Cell 12: 3658–3667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labib K, Tercero JA, Diffley JF . (2000). Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288: 1643–1647.

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Kawasaki Y, Young MR, Kihara M, Sugino A, Tye BK . (1997). Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev 11: 3365–3374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu E, Li X, Yan F, Zhao Q, Wu X . (2004). Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 279: 17283–17288.

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Diffley JF . (2005). CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122: 915–926.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S et al. (2004). Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118: 493–504.

    Article  CAS  PubMed  Google Scholar 

  • Markey MP, Angus SP, Strobeck MW, Williams SL, Gunawardena RW, Aronow BJ et al. (2002). Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Res 62: 6587–6597.

    CAS  PubMed  Google Scholar 

  • Mendez J, Stillman B . (2000). Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20: 8602–8612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura S, Seki T, Tanaka S, Diffley JF . (2004). Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Nature 431: 1118–1123.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VQ, Co C, Li JJ . (2001). Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411: 1068–1073.

    Article  CAS  PubMed  Google Scholar 

  • Noton E, Diffley JF . (2000). CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol Cell 5: 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Okuno Y, McNairn AJ, den Elzen N, Pines J, Gilbert DM . (2001). Stability, chromatin association and functional activity of mammalian pre-replication complex proteins during the cell cycle. EMBO J 20: 4263–4277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmero I, Peters G . (1996). Perturbation of cell cycle regulators in human cancer. Cancer Surv 27: 351–367.

    CAS  PubMed  Google Scholar 

  • Savio M, Cerri M, Cazzalini O, Perucca P, Stivala LA, Pichierri P et al. (2006). Replication-dependent DNA damage response triggered by roscovitine induces an uncoupling of DNA replication proteins. Cell Cycle 5: 2153–2159.

    Article  CAS  PubMed  Google Scholar 

  • Senga T, Sivaprasad U, Zhu W, Park JH, Arias EE, Walter JC et al. (2006). PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J Biol Chem 281: 6246–6252.

    Article  CAS  PubMed  Google Scholar 

  • Sever-Chroneos Z, Angus SP, Fribourg AF, Wan H, Todorov I, Knudsen KE et al. (2001). Retinoblastoma tumor suppressor protein signals through inhibition of cyclin-dependent kinase 2 activity to disrupt PCNA function in S phase. Mol Cell Biol 21: 4032–4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ . (1996). Cancer cell cycles. Science 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (2000). Cell cycle control and cancer. Harvey Lect 96: 73–92.

    PubMed  Google Scholar 

  • Sherr CJ . (2001). The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2: 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, McCormick F . (2002). The RB and p53 pathways in cancer. Cancer Cell 2: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  • Stillman B . (2005). Origin recognition and the chromosome cycle. FEBS Lett 579: 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan M, Morgan DO . (2007). Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 8: 894–903.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Diffley JF . (2002). Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes Dev 16: 2639–2649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y et al. (2003). A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 11: 997–1008.

    Article  CAS  PubMed  Google Scholar 

  • Woo RA, Poon RY . (2003). Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2: 316–324.

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, DeGregori J, Shohet R, Leone G, Stillman B, Nevins JR et al. (1998). Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc Natl Acad Sci USA 95: 3603–3608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Hitomi M, Stacey DW . (2006). Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div 1: 32.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Karen Knudsen and members of both Knudsen laboratories for critical review of the paper. Critical reagents were provided by Dr Piotr Sicinski and Pfizer Corp. This study was funded by a grant to ESK from the NCI CA106471. WAB and AKM are supported by NIEHS training grant T32 ES07250-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E S Knudsen.

About this article

Cite this article

Braden, W., McClendon, A. & Knudsen, E. RETRACTED ARTICLE: Cyclin-dependent kinase 4/6 activity is a critical determinant of pre-replication complex assembly. Oncogene 27, 7083–7093 (2008). https://doi.org/10.1038/onc.2008.319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.319

Keywords

This article is cited by

Search

Quick links