Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells

Abstract

In mammalian cells, nonsense-mediated messenger RNA decay (NMD) targets newly synthesized nonsense-containing mRNA bound by the cap-binding-protein heterodimer CBP80-CBP20 and at least one exon-junction complex (EJC). An EJC includes the NMD factors Upf3 or Upf3X and Upf2, and Upf2 recruits Upf1. Once this pioneer translation initiation complex is remodeled so that CBP80-CBP20 is replaced by eukaryotic initiation factor 4E, the mRNA is no longer detectably targeted for NMD. Here, we provide evidence that CBP80 augments the efficiency of NMD but not of Staufen1 (Stau1)-mediated mRNA decay (SMD). SMD depends on the recruitment of Upf1 by the RNA-binding protein Stau1 but does not depend on the other Upf proteins. We find that CBP80 interacts with Upf1 and promotes the interaction of Upf1 with Upf2 but not with Stau1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Downregulating CBP80 abrogates the reduction in mRNA abundance that is elicited by tethering Upf2 or Upf3, but not Upf1 or Stau1, downstream of a termination codon.
Figure 2: siRNA-mediated downregulation of CBP80 inhibits NMD but not SMD, and the inhibition of NMD is reversed by expressing siRNA-resistant CBP80.
Figure 3: 4E-BP1 inhibits the reduction in FLuc-MS2bs mRNA abundance mediated by the tethering of MS2-Upf1 or MS2-HA-Stau1 but not MS2-Upf2 or MS2-Upf3.
Figure 4: 4E-BP1 inhibits the reduction of FLuc-MS2bs mRNA abundance mediated by the tethering of MS2-Upf1 or MS2-HA-Stau1 by affecting eIF4E-bound but not CBP80-bound mRNA.
Figure 5: CBP80 interacts with Upf1.
Figure 6: CBP80 promotes interaction of Upf1 with Upf2 but does not detectably affect interaction of Upf1 with Stau1.
Figure 7: CBP80 promotes interaction of Upf1 with Upf2 in vitro.
Figure 8: Model proposing how CBP80 promotes NMD but not SMD.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Chiu, S.Y., Lejeune, F., Ranganathan, A.C. & Maquat, L.E. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev. 18, 745–754 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lejeune, F., Ranganathan, A.C. & Maquat, L.E. eIF4G is required for the pioneer round of translation in mammalian cells. Nat. Struct. Mol. Biol. 11, 992–1000 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, Y.K., Furic, L., Desgroseillers, L. & Maquat, L.E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Kataoka, N. & Dreyfuss, G. A simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex. J. Biol. Chem. 279, 7009–7013 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Hirose, T., Shu, M.D. & Steitz, J.A. Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay. Proc. Natl. Acad. Sci. USA 101, 17976–17981 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Tange, T.O., Nott, A. & Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 16, 279–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, J., Sun, X., Qian, Y. & Maquat, L.E. Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 4, 801–815 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moriarty, P.M., Reddy, C.C. & Maquat, L.E. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell. Biol. 18, 2932–2939 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Belgrader, P. & Maquat, L.E. Nonsense but not missense mutations can decrease the abundance of nuclear mRNA for the mouse major urinary protein, while both types of mutations can facilitate exon skipping. Mol. Cell. Biol. 14, 6326–6336 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lejbkowicz, F. et al. A fraction of the mRNA 5′ cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc. Natl. Acad. Sci. USA 89, 9612–9616 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dostie, J., Lejbkowicz, F. & Sonenberg, N. Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles. J. Cell Biol. 148, 239–247 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haghighat, A., Mader, S., Pause, A. & Sonenberg, N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14, 5701–5709 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mader, S., Lee, H., Pause, A. & Sonenberg, N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990–4997 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marcotrigiano, J., Gingras, A.C., Sonenberg, N. & Burley, S.K. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell 3, 707–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Gingras, A.C., Kennedy, S.G., O'Leary, M.A., Sonenberg, N. & Hay, N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev. 12, 502–513 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pal, M., Ishigaki, Y., Nagy, E. & Maquat, L.E. Evidence that phosphorylation of human Upf1 protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 7, 5–15 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhattacharya, A. et al. Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA 6, 1226–1235 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mazza, C., Ohno, M., Segref, A., Mattaj, I.W. & Cusack, S. Crystal structure of the human nuclear cap binding complex. Mol. Cell 8, 383–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Serin, G., Gersappe, A., Black, J.D., Aronoff, R. & Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209–223 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo, M., Duchaine, T.F. & DesGroseillers, L. Molecular mapping of the determinants involved in human Staufen-ribosome association. Biochem. J. 365, 817–824 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mendell, J.T., ap Rhys, C.M. & Dietz, H.C. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298, 419–422 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Maquat, L.E. Nonsense-mediated mRNA decay in mammals. J. Cell Sci. 118, 1773–1776 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Gao, Q., Das, B., Sherman, F. & Maquat, L.E. Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Proc. Natl. Acad. Sci. USA 102, 4258–4263 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castanotto, D., Li, H. & Rossi, J.J. Functional siRNA expression from transfected PCR products. RNA 8, 1454–1460 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kadlec, J., Izaurralde, E. & Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 11, 330–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Wickham, L., Duchaine, T., Luo, M., Nabi, I.R. & DesGroseillers, L. Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol. Cell. Biol. 19, 2220–2230 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gingras, A.C., Svitkin, Y., Belsham, G.J., Pause, A. & Sonenberg, N. Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc. Natl. Acad. Sci. USA 93, 5578–5583 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berger, F.G. & Szoka, P. Biosynthesis of the major urinary proteins in mouse liver: a biochemical genetic study. Biochem. Genet. 19, 1261–1273 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Lejeune, F., Li, X. & Maquat, L.E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675–687 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Wolcott for technical assistance; members of the Maquat lab, especially H. Kuzmiak, for comments on the manuscript; E. Izaurralde (European Molecular Biology Laboratory, Heidelberg, Germany) for anti-CBP80; L. DesGroseillers (Université de Montreal, Montreal) for anti-Stau1; H. Baumann and B. Held (Roswell Park Cancer Institute, Buffalo, New York, USA) for anti-MUP; J. Lykke-Andersen (University of Colorado, Boulder, Colorado, USA) for anti-Upf1 and pcNMS2-UPF plasmids; N. Sonenberg (McGill Cancer Center, Montreal) for pACTAG2-HA3, pACTAG2-HA3-4E-BP1, pACTAG2-heIF4E and anti-4E-BP1; S. Morley (University of Sussex, Falmer, Brighton, UK) for pBS-Hs-CBP80 and pRSET-Hs-CBP80; J. Lewis (Anadys Pharmaceuticals, Inc., UK) for pRSET-Hs-CBP20; and F. LeRoy and S. Peltz (University of Medicine and Dentistry of New Jersey, Pistcataway, New Jersey, USA) for the FLAG-Upf1 baculovirus expression vector. This work was supported by US National Institutes of Health grant GM059614 to L.E.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E Maquat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SMD targets eIF4E-bound mRNA. (PDF 123 kb)

Supplementary Fig. 2

4E-BP1 inhibits the reduction in FLuc-MS2bs mRNA abundance that is mediated by tethering either MS2-Upf1 or MS2-HA-Stau1. (PDF 129 kb)

Supplementary Fig. 3

Tethering CBP80 or CBP20 downstream of a termination codon triggers NMD. (PDF 5272 kb)

Supplementary Methods (PDF 56 kb)

Supplementry Data (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosoda, N., Kim, Y., Lejeune, F. et al. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol 12, 893–901 (2005). https://doi.org/10.1038/nsmb995

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb995

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing