Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly

Abstract

The retromer complex is responsible for the retrieval of mannose 6-phosphate receptors from the endosomal system to the Golgi. Here we present the crystal structure of the mammalian retromer subunit mVps29 and show that it has structural similarity to divalent metal-containing phosphoesterases. mVps29 can coordinate metals in a similar manner but has no detectable phosphoesterase activity in vitro, suggesting a unique specificity or function. The mVps29 and mVps26 subunits bind independently to mVps35 and together form a high-affinity heterotrimeric subcomplex. Mutagenesis reveals the structural basis for the interaction of mVps29 with mVps35 and subsequent association with endosomal membranes in vivo. A conserved hydrophobic surface distinct from the primary Vps35p binding site mediates assembly of the Vps29p–Vps26p–Vps35p subcomplex with sorting nexins in yeast, and mutation of either site results in a defect in retromer-dependent membrane trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of mVps29.
Figure 2: Comparison of mVps29 with related phosphoesterases.
Figure 3: Mammalian retromer assembly in vitro.
Figure 4: mVps29-GFP expression in mammalian cells.
Figure 5: Retromer assembly in vivo.
Figure 6: Analysis of Vps29p function in S. cerevisiae.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Dell'Angelica, E.C. & Payne, G.S. Intracellular cycling of lysosomal enzyme receptors: cytoplasmic tails' tales. Cell 106, 395–398 (2001).

    Article  CAS  Google Scholar 

  2. Rouille, Y., Rohn, W. & Hoflack, B. Targeting of lysosomal proteins. Semin. Cell Dev. Biol. 11, 165–171 (2000).

    Article  CAS  Google Scholar 

  3. Seaman, M.N., Marcusson, E.G., Cereghino, J.L. & Emr, S.D. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol. 137, 79–92 (1997).

    Article  CAS  Google Scholar 

  4. Seaman, M.N., McCaffery, J.M. & Emr, S.D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    Article  CAS  Google Scholar 

  5. Seaman, M.N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    Article  CAS  Google Scholar 

  6. Reddy, J.V. & Seaman, M.N. Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol. Biol. Cell 12, 3242–3256 (2001).

    Article  CAS  Google Scholar 

  7. Nothwehr, S.F., Ha, S.A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151, 297–310 (2000).

    Article  CAS  Google Scholar 

  8. Nothwehr, S.F., Bruinsma, P. & Strawn, L.A. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol. Biol. Cell 10, 875–890 (1999).

    Article  CAS  Google Scholar 

  9. Carlton, J., Bujny, M., Rutherford, A. & Cullen, P. Sorting nexins—unifying trends and new perspectives. Traffic 6, 75–82 (2005).

    Article  CAS  Google Scholar 

  10. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).

    Article  CAS  Google Scholar 

  11. Peter, B.J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  Google Scholar 

  12. Haft, C.R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).

    Article  CAS  Google Scholar 

  13. Arighi, C.N., Hartnell, L.M., Aguilar, R.C., Haft, C.R. & Bonifacino, J.S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  Google Scholar 

  14. Seaman, M.N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  Google Scholar 

  15. Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol. 6, 763–769 (2004).

    Article  CAS  Google Scholar 

  16. Holm, L. & Sander, C. Alignment of three-dimensional protein structures: network server for database searching. Methods Enzymol. 266, 653–662 (1996).

    Article  CAS  Google Scholar 

  17. Barford, D., Das, A.K. & Egloff, M.P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27, 133–164 (1998).

    Article  CAS  Google Scholar 

  18. Knofel, T. & Strater, N. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5′-nucleotidase based on crystal structures. J. Mol. Biol. 309, 239–254 (2001).

    Article  CAS  Google Scholar 

  19. Hopfner, K.P. et al. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105, 473–485 (2001).

    Article  CAS  Google Scholar 

  20. Rusnak, F. & Mertz, P. Calcineurin: form and function. Physiol. Rev. 80, 1483–1521 (2000).

    Article  CAS  Google Scholar 

  21. Zhuo, S., Clemens, J.C., Stone, R.L. & Dixon, J.E. Mutational analysis of a Ser/Thr phosphatase. Identification of residues important in phosphoesterase substrate binding and catalysis. J. Biol. Chem. 269, 26234–26238 (1994).

    CAS  PubMed  Google Scholar 

  22. Zhang, J., Zhang, Z., Brew, K. & Lee, E.Y. Mutational analysis of the catalytic subunit of muscle protein phosphatase–1. Biochemistry 35, 6276–6282 (1996).

    Article  CAS  Google Scholar 

  23. Huang, H.B., Horiuchi, A., Goldberg, J., Greengard, P. & Nairn, A.C. Site-directed mutagenesis of amino acid residues of protein phosphatase 1 involved in catalysis and inhibitor binding. Proc. Natl. Acad. Sci. USA 94, 3530–3535 (1997).

    Article  CAS  Google Scholar 

  24. Mertz, P., Yu, L., Sikkink, R. & Rusnak, F. Kinetic and spectroscopic analyses of mutants of a conserved histidine in the metallophosphatases calcineurin and lambda protein phosphatase. J. Biol. Chem. 272, 21296–21302 (1997).

    Article  CAS  Google Scholar 

  25. Chen, S. et al. Structural and functional characterization of a novel phosphodiesterase from Methanococcus jannaschii . J. Biol. Chem. 279, 31854–31862 (2004).

    Article  CAS  Google Scholar 

  26. Seaman, M.N. & Williams, H.P. Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol. Biol. Cell 13, 2826–2840 (2002).

    Article  CAS  Google Scholar 

  27. Wang, Y., Zhou, Y., Szabo, K., Haft, C.R. & Trejo, J. Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol. Biol. Cell 13, 1965–1976 (2002).

    Article  CAS  Google Scholar 

  28. Powell, H.R. The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr. D 55, 1690–1695 (1999).

    Article  CAS  Google Scholar 

  29. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  30. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomolous diffraction methods. in Methods Enzymol. Vol. 472 (eds. Carter, C.W., Jr. & Sweet, R.M.) (Academic, New York, 1997).

    Google Scholar 

  31. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  32. Jones, T.A., Zou, J.Y., Cowen, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  33. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999).

    Article  CAS  Google Scholar 

  34. Lindqvist, Y., Johansson, E., Kaija, H., Vihko, P. & Schneider, G. Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 A resolution with a mu-(hydr)oxo bridged di-iron center. J. Mol. Biol. 291, 135–147 (1999).

    Article  CAS  Google Scholar 

  35. Voegtli, W.C., White, D.J., Reiter, N.J., Rusnak, F. & Rosenzweig, A.C. Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes. Biochemistry 39, 15365–15374 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Evans and M. Noble for helpful scientific discussions, S. Höning for technical assistance, M. Harbour for mass spectrometry, D. Barford for the phage λ protein phosphatase expression construct, S.-H. Kim for the MJ0936 protein and the staff of Daresbury SRS beamline 9.6 for their assistance. This work was supported by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science to D.J.O.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew N J Seaman or David J Owen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Structure of mVps29 and cross-species comparison. (PDF 2065 kb)

Supplementary Fig. 2

Comparison of apo mVps29 (magenta) and Mn2+-bound mVps29 (green). (PDF 1156 kb)

Supplementary Table 1

Active site residues of phosphoesterases of known structure. (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, B., Skinner, C., Watson, P. et al. Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat Struct Mol Biol 12, 594–602 (2005). https://doi.org/10.1038/nsmb954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing