Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation

Abstract

Botrocetin is a snake venom protein that enhances the affinity of the A1 domain of plasma von Willebrand factor (vWF) for the platelet receptor glycoprotein Ibα (GPIbα), an event that contributes to bleeding and host death. Here we describe a kinetic and crystallographic analysis of this interaction that reveals a novel mechanism of affinity enhancement. Using high-temporal-resolution microscopy, we show that botrocetin decreases the GPIbα off-rate two-fold in both human and mouse complexes without affecting the on-rate. The key to this behavior is that, upon binding of GPIbα to vWF-A1, botrocetin prebound to vWF-A1 makes no contacts initially with GPIbα, but subsequently slides around the A1 surface to form a new interface. This two-step mechanism and flexible coupling may prevent adverse alterations in on-rate of GPIbα for vWF-A1, and permit adaptation to structural differences in GPIbα and vWF in several prey species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and comparison of the mouse vWF-A1–botrocetin binary complex.
Figure 2: Structure of the vWF-A1–GPIbα–botrocetin ternary complex.
Figure 3: Structural changes on formation of ternary complex.
Figure 4: Requirement for botrocetin binding to the A1 domain.
Figure 5: The effect of botrocetin on the kinetics of the GPIbα–vWF-A1 tether bond.
Figure 6: The botrocetin-GPIbα interface regulates the off-rate of the ternary complex.
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Savage, B., Almus-Jacobs, F. & Ruggeri, Z.M. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94, 657–666 (1998).

    Article  CAS  Google Scholar 

  2. Doggett, T.A. et al. Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIbα-vWF tether bond. Biophys. J. 83, 194–205 (2002).

    Article  CAS  Google Scholar 

  3. Kumar, R.A. et al. Kinetics of GPIbα–vWF-A1 tether bond under flow: effect of GPIbα mutations on the association and dissociation rates. Biophys. J. 85, 4099–4109 (2003).

    Article  CAS  Google Scholar 

  4. Read, M.S., Shermer, R.W. & Brinkhous, K.M. Venom coagglutinin: an activator of platelet aggregation dependent on von Willebrand factor. Proc. Natl. Acad. Sci. USA 75, 4514–4518 (1978).

    Article  CAS  Google Scholar 

  5. Brinkhous, K.M., Read, M.S., Fricke, W.A. & Wagner, R.H. Botrocetin (venom coagglutinin): reaction with a broad spectrum of multimeric forms of factor VIII macromolecular complex. Proc. Natl. Acad. Sci. USA 80, 1463–1466 (1983).

    Article  CAS  Google Scholar 

  6. Sanders, W.E., Read, M.S., Reddick, R.L., Garris, J.B. & Brinkhous, K.M. Thrombotic thrombocytopenia with von Willebrand factor deficiency induced by botrocetin. An animal model. Lab. Invest. 59, 443–452 (1988).

    CAS  PubMed  Google Scholar 

  7. Fujimura, Y., Holland, L.Z., Ruggeri, Z.M. & Zimmerman, T.S. The von Willebrand factor domain-mediating botrocetin-induced binding to glycoprotein Ib lies between Val449 and Lys728. Blood 70, 985–988 (1987).

    CAS  PubMed  Google Scholar 

  8. Andrews, R.K., Booth, W.J., Gorman, J.J., Castaldi, P.A. & Berndt, M.C. Purification of botrocetin from Bothrops jararaca venom. Analysis of the botrocetin-mediated interaction between von Willebrand factor and the human platelet membrane glycoprotein Ib–IX complex. Biochemistry 28, 8317–8326 (1989).

    Article  CAS  Google Scholar 

  9. Rabinowitz, I. et al. von Willebrand disease type B: a missense mutation selectively abolishes ristocetin-induced von Willebrand factor binding to platelet glycoprotein Ib. Proc. Natl. Acad. Sci. USA 89, 9846–9849 (1992).

    Article  CAS  Google Scholar 

  10. Ajzenberg, N., Ribba, A.-S., Rastegar-Lari, G., Meyer, D. & Baruch, D. Effect of recombinant von Willebrand factor reproducing type 2B or type 2M mutations on shear-induced platelet aggregation. Blood 95, 3796–3803 (2000).

    CAS  PubMed  Google Scholar 

  11. Fukuda, K. et al. Structural basis of von Willebrand factor activation by the snake toxin botrocetin. Structure 10, 943–950 (2002).

    Article  CAS  Google Scholar 

  12. Huizinga, E.G. et al. Structures of glycoprotein Ibα and its complex with von Willebrand factor A1 domain. Science 297, 1176–1179 (2002).

    Article  CAS  Google Scholar 

  13. Jenkins, P.V., Pasi, K.J. & Perkins, S.J. Molecular modeling of ligand and mutation sites of the type A domains of human von Willebrand factor and their relevance to von Willebrand's disease. Blood 91, 2032–2044 (1998).

    CAS  PubMed  Google Scholar 

  14. Miura, S. et al. Interaction of von Willebrand factor A1 with platelet glycoprotein Ibα (1–289). Slow intrinsic binding kinetics mediate rapid platelet adhesion. J. Biol. Chem. 275, 7539–7546 (2000).

    Article  CAS  Google Scholar 

  15. Emsley, J., Cruz, M., Handin, R. & Liddington, R. Crystal structure of the von Willebrand factor A1 domain and implications for the binding of platelet glycoprotein Ib. J. Biol. Chem. 273, 10396–10401 (1998).

    Article  CAS  Google Scholar 

  16. Dumas, J.J. et al. Crystal structure of the wild-type von Willebrand factor A1–glycoprotein Ibα complex reveals conformational differences with a complex bearing von Willebrand disease mutations. J. Biol. Chem. 279, 23327–23334 (2004).

    Article  CAS  Google Scholar 

  17. Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  CAS  Google Scholar 

  18. López, J.A. et al. Cloning of the α chain of human platelet glycoprotein Ib: a transmembrane protein with homology to leucine-rich α2-glycoprotein. Proc. Natl. Acad. Sci. USA 84, 5615–5619 (1987).

    Article  Google Scholar 

  19. Ware, J., Russell, S. & Ruggeri, Z.M. Cloning of the murine platelet glycoprotein Ibα gene highlighting species-specific platelet adhesion. Blood Cells Mol. Dis. 23, 292–301 (1997).

    Article  CAS  Google Scholar 

  20. Kenny, D., Morateck, P.A., Fahs, S.A., Warltier, D.C. & Montgomery, R.R. Cloning and expression of canine glycoprotein Ibα. Thromb. Haemost. 82, 1327–1333 (1999).

    Article  CAS  Google Scholar 

  21. Marchese, P. et al. Identification of three tyrosine residues of glycoprotein Ibα with distinct roles in von Willebrand factor and α-thrombin binding. J. Biol. Chem. 270, 9571–9578 (1995).

    Article  CAS  Google Scholar 

  22. Dong, J.-f. et al. Tyrosine sulfation of glycoprotein Ibα. Role of electrostatic interactions in von Willebrand factor binding. J. Biol. Chem. 276, 16690–16694 (2001).

    Article  CAS  Google Scholar 

  23. Uff, S., Clemetson, J.M., Harrison, T., Clemetson, K.J. & Emsley, J. Crystal structure of the platelet glycoprotein Ibα N-terminal domain reveals an unmasking mechanism for receptor activation. J. Biol. Chem. 277, 35657–35663 (2002).

    Article  CAS  Google Scholar 

  24. Doggett, T. et al. Alterations in the intrinsic properties of the GPIbα-VWF tether bond define the kinetics of the platelet-type von Willebrand disease mutation, Gly233Val. Blood 102, 152–160 (2003).

    Article  CAS  Google Scholar 

  25. Chang, K.-C. & Hammer, D.A. The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys. J. 76, 1280–1292 (1999).

    Article  CAS  Google Scholar 

  26. Chen, S. & Springer, T.A. Selectin receptor-ligand bonds: formation limited by shear rate and dissociation governed by the Bell model. Proc. Natl. Acad. Sci. USA 98, 950–955 (2001).

    Article  CAS  Google Scholar 

  27. Alon, R., Hammer, D.A. & Springer, T.A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374, 539–542 (1995).

    Article  CAS  Google Scholar 

  28. Ramachandran, V. et al. Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin. Proc. Natl. Acad. Sci. USA 96, 13771–13776 (1999).

    Article  CAS  Google Scholar 

  29. Smith, M.J., Berg, E.L. & Lawrence, M.B. A direct comparison of selectin-mediated transient adhesive events using high temporal resolution. Biophys. J. 77, 3371–3383 (1999).

    Article  CAS  Google Scholar 

  30. Bell, G.I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  Google Scholar 

  31. Bonnefoy, A. et al. Shielding the front-strand β3 of the von Willebrand factor A1 domain inhibits its binding to platelet glycoprotein Ibα. Blood 101, 1375–1383 (2003).

    Article  CAS  Google Scholar 

  32. Cestele, S. & Catterall, W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82, 883–892 (2000).

    Article  CAS  Google Scholar 

  33. Lerm, M., Schmidt, G. & Aktories, K. Bacterial protein toxins targeting rho GTPases. FEMS Microbiol. Lett. 188, 1–6 (2000).

    Article  CAS  Google Scholar 

  34. Matsui, K., Boniface, J.J., Steffner, P., Reay, P.A. & Davis, M.M. Kinetics of T-cell receptor binding to peptide/I-Ek complexes: correlation of the dissociation rate with T-cell responsiveness. Proc. Natl. Acad. Sci. USA 91, 12862–12866 (1994).

    Article  CAS  Google Scholar 

  35. Dwir, O. et al. Avidity enhancement of L-selectin bonds by flow: shear-promoted rotation of leukocytes turn labile bonds into functional tethers. J. Cell Biol. 163, 649–659 (2003).

    Article  CAS  Google Scholar 

  36. Chen, J., Diacovo, T.G., Grenache, D.G., Santoro, S.A. & Zutter, M.M. The α2 integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am. J. Pathol. 161, 337–344 (2002).

    Article  CAS  Google Scholar 

  37. Kahn, M.L. et al. Glycoprotein V-deficient platelets have undiminished thrombin responsiveness and do not exhibit a Bernard-Soulier phenotype. Blood 94, 4112–4121 (1999).

    CAS  PubMed  Google Scholar 

  38. Fujimura, Y. et al. Isolation and chemical characterization of two structurally and functionally distinct forms of botrocetin, the platelet coagglutinin isolated from the venom of Bothrops jararaca. Biochemistry 30, 1957–1964 (1991).

    Article  CAS  Google Scholar 

  39. Sekiya, F., Atoda, H. & Morita, T. Isolation and characterization of an anticoagulant protein homologous to botrocetin from the venom of Bothrops jararaca. Biochemistry 32, 6892–6897 (1993).

    Article  CAS  Google Scholar 

  40. Hammer, D.A. & Apte, S.M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys. J. 63, 35–57 (1992).

    Article  CAS  Google Scholar 

  41. Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976).

    Article  CAS  Google Scholar 

  42. Afshar-Kharghan, V., Li, C.Q., Khoshnevis-Asl, M. & López, J.A. Kozak sequence polymorphism of the glycoprotein (GP) Ibα gene is a major determinant of the plasma membrane levels of the platelet GP Ib–IX–V complex. Blood 94, 186–191 (1999).

    CAS  PubMed  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–327 (1997).

    Article  CAS  Google Scholar 

  44. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  45. Sen, U. et al. Crystal structure of the von Willebrand factor modulator botrocetin. Biochemistry 40, 345–352 (2001).

    Article  CAS  Google Scholar 

  46. Roussel, A. & Cambileau, C. TURBO-FRODO. In Silicon Graphics Geometry (Silicon Graphics, Mountain View, California, USA, 1991).

    Google Scholar 

  47. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  48. Laskowski, R.A., MacArthur, N.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  49. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  50. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  51. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  52. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  53. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank to the staff of the Stanford Synchrotron Radiation Laboratory and the US Department of Energy for the use of X-ray data collection facilities. This work was supported by grants from the US National Institutes of Health (to R.C.L and T.G.D), the American Heart Association (T.G.D.) and a postdoctoral fellowship from the PhRMA Foundation (I.J.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert C Liddington or Thomas G Diacovo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Intrinsic off-rate for the botrocetin–vWF-A1–GPIb tether bond. (PDF 184 kb)

Supplementary Fig. 2

The effect of botrocetin on the kinetics of the GPIbα–vWF-A1 tether bond. (PDF 330 kb)

Supplementary Fig. 3

The botrocetin-GPIbα interface regulates the off-rate of the ternary complex. (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, K., Doggett, T., Laurenzi, I. et al. The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation. Nat Struct Mol Biol 12, 152–159 (2005). https://doi.org/10.1038/nsmb892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing