Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Key features of the interaction between Pcf11 CID and RNA polymerase II CTD

Abstract

The C-terminal domain (CTD) of the large subunit of RNA polymerase II is a platform for mRNA processing factors and links gene transcription to mRNA capping, splicing and polyadenylation. Pcf11, an essential component of the mRNA cleavage factor IA, contains a CTD-interaction domain that binds in a phospho-dependent manner to the heptad repeats within the RNA polymerase II CTD. We show here that the phosphorylated CTD exists as a dynamic disordered ensemble in solution and, by induced fit, it assumes a structured conformation when bound to Pcf11. In addition, we detected cis-trans populations for the CTD prolines, and found that only the all-trans form is selected for binding. These data suggest that the recognition of the CTD is regulated by independent site-specific modifications (phosphorylation and proline cis-trans isomerization) and, probably, by the local concentration of suitable binding sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peptides used in this study.
Figure 2: Conformation of CTD-derived peptides.
Figure 3: Cis-trans isomerization in CTD-derived peptides.
Figure 4: Structure of Pcf11 CID.
Figure 6: Binding of Pcf11 CID to CTD-derived peptides.
Figure 5: CID-PTSPSYSpPTSPSY interaction by ITC.
Figure 7: Cis-trans proline isomerization and CID binding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Howe, K.J. RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim. Biophys. Acta 1577, 308–324 (2002).

    Article  CAS  Google Scholar 

  2. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  Google Scholar 

  3. Bentley, D. The mRNA assembly line: transcription and processing machines in the same factory. Curr. Opin. Cell Biol. 14, 336–342 (2002).

    Article  CAS  Google Scholar 

  4. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  Google Scholar 

  5. Buratowski, S. The CTD code. Nat. Struct. Biol. 10, 679–680 (2003).

    Article  CAS  Google Scholar 

  6. Ahn, S.H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004).

    Article  CAS  Google Scholar 

  7. Cho, E.J., Kobor, M.S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001).

    Article  CAS  Google Scholar 

  8. Hani, J. et al. Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3′-end formation of a pre-mRNA in Saccharomyces cerevisiae. J. Biol. Chem. 274, 108–116 (1999).

    Article  CAS  Google Scholar 

  9. Gross, S. & Moore, C. Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I. Proc. Natl. Acad. Sci. USA 98, 6080–6085 (2001).

    Article  CAS  Google Scholar 

  10. Barilla, D., Lee, B.A. & Proudfoot, N.J. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 98, 445–450 (2001).

    CAS  PubMed  Google Scholar 

  11. Sadowski, M., Dichtl, B., Hubner, W. & Keller, W. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J. 22, 2167–2177 (2003).

    Article  CAS  Google Scholar 

  12. Patturajan, M., Wei, X., Berezney, R. & Corden, J.L. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol. Cell. Biol. 18, 2406–2415 (1998).

    Article  CAS  Google Scholar 

  13. Doerks, T., Copley, R.R., Schultz, J., Ponting, C.P. & Bork, P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12, 47–56 (2002).

    Article  CAS  Google Scholar 

  14. Licatalosi, D.D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111 (2002).

    Article  CAS  Google Scholar 

  15. Meinhart, A. & Cramer, P. Recognition of RNA polymerase II carboxy-terminal domain by 3”-RNA-processing factors. Nature 430, 223–226 (2004).

    Article  CAS  Google Scholar 

  16. Bienkiewicz, E.A., Moon Woody, A. & Woody, R.W. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments. J. Mol. Biol. 297, 119–133 (2000).

    Article  CAS  Google Scholar 

  17. Cagas, P.M. & Corden, J.L. Structural studies of a synthetic peptide derived from the carboxyl-terminal domain of RNA polymerase II. Proteins, 21, 149–160 (1995).

    Article  CAS  Google Scholar 

  18. Brauer, M. & Sikes, B.D. Phosphorus-31 nuclear magnetic resonances studies of phosphorylated proteins. Methods Enzymol. 107, 37–81 (1984).

    Google Scholar 

  19. Schubert, M., Labudde, D., Oschkinat, H. & Schmieder, P. A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. J. Biomol. NMR 24, 149–154 (2002).

    Article  CAS  Google Scholar 

  20. O'Neal, K.D. et al. Multiple cis-trans conformers of the prolactin receptor proline-rich motif (PRM) peptide detected by reverse-phase HPLC, CD and NMR spectroscopy. Biochem. J. 315, 833–844 (1996).

    Article  CAS  Google Scholar 

  21. Stiller, J.W. & Cook, M.S. Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. Eukaryot. Cell 3, 735–740 (2004).

    Article  CAS  Google Scholar 

  22. Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  Google Scholar 

  23. Misra, S., Puertollano, R., Kato, Y., Bonifacino, J.S. & Hurley, J.H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933–937 (2002).

    Article  CAS  Google Scholar 

  24. Noble, C.G., Walker, P.A., Calder, L.J. & Taylor, I.A. Rna14-Rna15 assembly mediates the RNA binding capability of S. cerevisiae cleavage factor IA. Nucleic Acids Res. 32, 3364–3375 (2004).

    Article  CAS  Google Scholar 

  25. Halford, S.E. & Marko, J.F. How do site-specific DNA-binding proteins find their targets. Nucleic Acids Res. 32, 3040–3052 (2004).

    Article  CAS  Google Scholar 

  26. Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol. 7, 639–643 (2000).

    Article  CAS  Google Scholar 

  27. Fabrega, C., Shen, V., Shuman, S. & Lima, C.D. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. Cell 11, 1549–1561 (2003).

    Article  CAS  Google Scholar 

  28. Weivad, M. et al. Catalysis of proline-directed protein phosphorylation by peptidyl-prolyl cis/trans isomerase. J. Mol. Biol. 339, 635–646 (2004).

    Article  Google Scholar 

  29. Allen, M., Friedler, A., Schon, O. & Bycroft, M. The structure of an FF domain from human HYPA/FBP11. J. Mol. Biol. 323, 411–416 (2002).

    Article  CAS  Google Scholar 

  30. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  31. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  32. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  33. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  34. Morris, R.J., Perrakis, A. & Lamzin, V.S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003).

    Article  CAS  Google Scholar 

  35. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  36. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999).

    Article  CAS  Google Scholar 

  37. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR. 2, 661–665 (1992).

    Article  CAS  Google Scholar 

  38. Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wuthrich, K. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. USA 95, 13585–13590 (1998).

    Article  CAS  Google Scholar 

  39. Salzmann, M., Wider, G., Pervushin, K. & Wuthrich, K. Improved sensitivity and coherence selection for [15N, 1H]-TROSY elements in triple-resonance experiments. J. Biomol. NMR 15, 181–184 (1999).

    Article  CAS  Google Scholar 

  40. Breeze, A.L. Isotope filtered NMR methods for the study of biomolecular structure and interactions. Prog. NMR Spectrosc. 36, 323–372 (2000).

    Article  CAS  Google Scholar 

  41. Post, C.B. Exchange-transferred NOE spectroscopy and bound ligand structure determination. Curr. Opin. Struct. Biol. 13, 581–588 (2003).

    Article  CAS  Google Scholar 

  42. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  43. Bartels, C., Xia, T.H., Billeter, M., Gunter, P. & W thrich, K. The program XEASY for computer supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 5, 1–10 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Gamblin for assistance with crystal handling and critical reading of the manuscript. We also thank T. Frenkiel for assistance in recording NMR experiments, P. Fletcher for synthesizing the (YSpPTSPS)2 and (YSpPTSPS)3 peptides, and P. Temussi for sharing his expertise on studies of peptides.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ian A Taylor or Andres Ramos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Free peptide's ROESY. (PDF 91 kb)

Supplementary Fig. 2

Free peptide's 13C HSQC. (PDF 137 kb)

Supplementary Fig. 3

15N HSQC of Pcf11 constructs. (PDF 351 kb)

Supplementary Fig. 4

15N HSQC of Pcf11 titration. (PDF 276 kb)

Supplementary Fig. 5

Tr-NOE experiments. (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noble, C., Hollingworth, D., Martin, S. et al. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD. Nat Struct Mol Biol 12, 144–151 (2005). https://doi.org/10.1038/nsmb887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing