Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites

Abstract

The superfamily of plant and bacterial type III polyketide synthases (PKSs) produces diverse metabolites with distinct biological functions. PKS18, a type III PKS from Mycobacterium tuberculosis, displays an unusual broad specificity for aliphatic long-chain acyl-coenzyme A (acyl-CoA) starter units (C6–C20) to produce tri- and tetraketide pyrones. The crystal structure of PKS18 reveals a 20 Å substrate binding tunnel, hitherto unidentified in this superfamily of enzymes. This remarkable tunnel extends from the active site to the surface of the protein and is primarily generated by subtle changes of backbone dihedral angles in the core of the protein. Mutagenic studies combined with structure determination provide molecular insights into the structural elements that contribute to the chain length specificity of the enzyme. This first bacterial type III PKS structure underlines a fascinating example of the way in which subtle changes in protein architecture can generate metabolite diversity in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Overall structure of PKS18.
Figure 3: Structural basis for substrate specificity.
Figure 4: Functional characterization of substrate binding tunnel.
Figure 5: C205F mutant structure.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  2. O'Hagan, D. Biosynthesis of polyketide metabolites. Nat. Prod. Rep. 9, 447–479 (1992).

    Article  CAS  Google Scholar 

  3. Barry, C.E. Interpreting cell wall 'virulence factors' of Mycobacterium tuberculosis. Trends Microbiol. 9, 237–241 (2001).

    Article  CAS  Google Scholar 

  4. Cox, J.S., Chen, B., McNeil, M. & Jacobs, W.R., Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    Article  CAS  Google Scholar 

  5. Kolattukudy, P.E., Fernandes, N.D., Azad, A.K., Fitzmaurice, A.M. & Sirakova, T.D. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol. 24, 263–270 (1997).

    Article  CAS  Google Scholar 

  6. Brennan, P.J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb.) 83, 91–97 (2003).

    Article  CAS  Google Scholar 

  7. Minnikin, D.E., Kremer, L., Dover, L.G. & Besra, G.S. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9, 545–553 (2002).

    Article  CAS  Google Scholar 

  8. Hopwood, D.A. Genetic contributions to understanding polyketide synthases. Chem. Rev. 97, 2465–2498 (1997).

    Article  CAS  Google Scholar 

  9. Gokhale, R.S. & Tuteja, D. Biochemistry of polyketide synthases. in Biotechnology vol. 10 (ed. Rehm, H.-J.) 341–372 (Wiley-VCH, Weinheim, 2001).

    Google Scholar 

  10. Khosla, C., Gokhale, R.S., Jacobsen, J.R. & Cane, D.E. Tolerance and specificity of polyketide synthases. Annu. Rev. Biochem. 68, 219–253 (1999).

    Article  CAS  Google Scholar 

  11. Hutchinson, C.R. Microbial polyketide synthases: more and more prolific. Proc. Natl. Acad. Sci. USA 96, 3336–3338 (1999).

    Article  CAS  Google Scholar 

  12. Schroder, J. The family of chalcone synthase-related proteins: functional diversity and evolution. in Evolution of Metabolic Pathways (eds. Romeo, J.T., Ibrahim, R.K., Varin, L. & De Luca, V.) 55–89 (Pergamon Press, Amsterdam, 2000).

    Chapter  Google Scholar 

  13. Austin, M.B. & Noel, J.P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

    Article  CAS  Google Scholar 

  14. Funa, N. et al. A new pathway for polyketide synthesis in microorganisms. Nature 400, 897–899 (1999).

    Article  CAS  Google Scholar 

  15. Moore, B.S. & Hopke, J.N. Discovery of a new bacterial polyketide biosynthetic pathway. Chembiochem. 2, 35–38 (2001).

    Article  CAS  Google Scholar 

  16. Ferrer, J.L., Jez, J.M., Bowman, M.E., Dixon, R.A. & Noel, J.P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6, 775–784 (1999).

    Article  CAS  Google Scholar 

  17. Jez, J.M. et al. Structural control of polyketide formation in plant-specific polyketide synthases. Chem. Biol. 7, 919–930 (2000).

    Article  CAS  Google Scholar 

  18. Dawe, J.H., Porter, C.T., Thornton, J.M. & Tabor, A.B. A template search reveals mechanistic similarities and differences in β-ketoacyl synthases (KAS) and related enzymes. Proteins 52, 427–435 (2003).

    Article  CAS  Google Scholar 

  19. Heath, R.J. & Rock, C.O. The Claisen condensation in biology. Nat. Prod. Rep. 19, 581–596 (2002).

    Article  CAS  Google Scholar 

  20. Saxena, P., Yadav, G., Mohanty, D. & Gokhale, R.S. A new family of type III polyketide synthases in Mycobacterium tuberculosis. J. Biol. Chem. 278, 44780–44790 (2003).

    Article  CAS  Google Scholar 

  21. Rukmini, R., Shanmugam, V.M., Saxena, P., Gokhale, R.S. & Sankaranarayanan, R. Crystallization and preliminary X-ray crystallographic investigations of an unusual type III polyketide synthase PKS18 from Mycobacterium tuberculosis. Acta Crystallogr. D 60, 749–751 (2004).

    Article  Google Scholar 

  22. Zeelen, J.P., Wierenga, R.K., Erdmann, R. & Kunau, W.H. Crystallographic studies of 3-ketoacylCoA thiolase from yeast Saccharomyces cerevisiae. J. Mol. Biol. 215, 211–213 (1990).

    Article  CAS  Google Scholar 

  23. Moche, M., Dehesh, K., Edwards, P. & Lindqvist, Y. The crystal structure of β-ketoacyl-acyl carrier protein synthase II from Synechocystis sp. at 1.54 Å resolution and its relationship to other condensing enzymes. J. Mol. Biol. 305, 491–503 (2001).

    Article  CAS  Google Scholar 

  24. Scarsdale, J.N., Kazanina, G., He, X., Reynolds, K.A. & Wright, H.T. Crystal structure of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III. J. Biol. Chem. 276, 20516–20522 (2001).

    Article  CAS  Google Scholar 

  25. Olsen, J.G., Kadziola, A., von Wettstein-Knowles, P., Siggaard-Andersen, M. & Larsen, S. Structures of β-ketoacyl-acyl carrier protein synthase I complexed with fatty acids elucidate its catalytic machinery. Structure (Camb.) 9, 233–243 (2001).

    Article  CAS  Google Scholar 

  26. Tseng, C.C., McLoughlin, S.M., Kelleher, N.L. & Walsh, C.T. Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase. Biochemistry 43, 970–980 (2004).

    Article  CAS  Google Scholar 

  27. Trivedi, O.A. et al. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428, 441–445 (2004).

    Article  CAS  Google Scholar 

  28. Schroeder, E.K., de Souza, N., Santos, D.S., Blanchard, J.S. & Basso, L.A. Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Curr. Pharm. Biotechnol. 3, 197–225 (2002).

    Article  CAS  Google Scholar 

  29. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  30. Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  31. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  32. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  33. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  34. Evans, S.V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  35. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Singh and S.K. Basu for helpful discussions. This work was supported by grants from the Council of Scientific and Industrial Research (CSIR), India, to the Centre for Cellular and Molecular Biology, and the Department of Biotechnology (DBT), India, to the National Institute of Immunology. R.S. and R.S.G. are Wellcome Trust International Senior Research Fellows (WTISRF) in Biomedical Science in India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajan Sankaranarayanan or Rajesh S Gokhale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankaranarayanan, R., Saxena, P., Marathe, U. et al. A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites. Nat Struct Mol Biol 11, 894–900 (2004). https://doi.org/10.1038/nsmb809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb809

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing