Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller

Abstract

During the assembly of clathrin-coated vesicles, many peripheral membrane proteins, including the amphiphysins, use LLDLD-type clathrin-box motifs to interact with the N-terminal β-propeller domain (TD) of clathrin. The 2.3 Å–resolution structure of the clathrin TD in complex with a TLPWDLWTT peptide from amphiphysin 1 delineates a second clathrin-binding motif, PWXXW (the W box), that binds at a site on the TD remote from the clathrin box–binding site. The presence of both sequence motifs within the unstructured region of the amphiphysins allows them to bind more tightly to free TDs than do other endocytic proteins that contain only clathrin-box motifs. This property, along with the propensity of the N-terminal BAR domain to bind curved membranes, will preferentially localize amphiphysin and its partner, dynamin, to the periphery of invaginated clathrin lattices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the bovine clathrin TD in complex with the W-box peptide (TLPWDLWTT) from human amphiphysin 1.
Figure 2: Molecular detail of the W-box peptide-binding site.
Figure 3: Amphiphysin-TD interactions.
Figure 5: Interaction of amphiphysin and SNX9 with cytosolic clathrin trimers.
Figure 4: Schematic representation of clathrin TD bound to the insert domain of amphiphysin that contains both a clathrin-box and a W-box motif.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Brodsky, F.M., Chen, C.Y., Knuehl, C., Towler, M.C. & Wakeham, D.E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  Google Scholar 

  2. Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  3. Robinson, M.S. & Bonifacino, J.S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).

    Article  CAS  Google Scholar 

  4. Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  Google Scholar 

  5. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001).

    Article  CAS  Google Scholar 

  6. McMahon, H.T. Endocytosis: an assembly protein for clathrin cages. Curr. Biol. 9, R332–R335 (1999).

    Article  CAS  Google Scholar 

  7. Slepnev, V.I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat. Rev. Neurosci. 1, 161–172 (2000).

    Article  CAS  Google Scholar 

  8. Lafer, E.M. Clathrin-protein interactions. Traffic 3, 513–520 (2002).

    Article  CAS  Google Scholar 

  9. Wendland, B. Epsins: adaptors in endocytosis? Nat. Rev. Mol. Cell Biol. 3, 971–977 (2002).

    Article  CAS  Google Scholar 

  10. Korolchuk, V. & Banting, G. Kinases in clathrin-mediated endocytosis. Biochem. Soc. Trans. 31, 857–860 (2003).

    Article  CAS  Google Scholar 

  11. Traub, L.M. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J. Cell Biol. 163, 203–208 (2003).

    Article  CAS  Google Scholar 

  12. Evans, P.R. & Owen, D.J. Endocytosis and vesicle trafficking. Curr. Opin. Struct. Biol. 12, 814–821 (2002).

    Article  CAS  Google Scholar 

  13. Kirchhausen, T. Clathrin. Annu. Rev. Biochem. 69, 699–727 (2000).

    Article  CAS  Google Scholar 

  14. Ybe, J.A. et al. Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature 399, 371–375 (1999).

    Article  CAS  Google Scholar 

  15. ter Haar, E., Musacchio, A., Harrison, S.C. & Kirchhausen, T. Atomic structure of clathrin: a β propeller terminal domain joins an a zigzag linker. Cell 95, 563–573 (1998).

    Article  CAS  Google Scholar 

  16. Goodman, O.B. Jr., Krupnick, J.G., Gurevich, V.V., Benovic, J.L. & Keen, J.H. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J. Biol. Chem. 272, 15017–15022 (1997).

    Article  CAS  Google Scholar 

  17. ter Haar, E., Harrison, S.C. & Kirchhausen, T. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc. Natl. Acad. Sci. USA 97, 1096–1100 (2000).

    Article  CAS  Google Scholar 

  18. Ramjaun, A.R. & McPherson, P.S. Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J. Neurochem. 70, 2369–2376 (1998).

    Article  CAS  Google Scholar 

  19. Slepnev, V.I., Ochoa, G.C., Butler, M.H. & De Camilli, P. Tandem arrangement of the clathrin and AP-2 binding domains in amphiphysin 1, and disruption of clathrin coat function mediated by amphiphysin fragments comprising these sites. J. Biol. Chem. 275, 17583–17589 (2000).

    Article  CAS  Google Scholar 

  20. Drake, M.T. & Traub, L.M. Interaction of two structurally-distinct sequence types with the clathrin terminal domain β-propeller. J. Biol. Chem. 276, 28700–28709 (2001).

    Article  CAS  Google Scholar 

  21. Owen, D.J. & Evans, P.R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282, 1327–1332 (1998).

    Article  CAS  Google Scholar 

  22. Collins, B.M., Praefcke, G.J., Robinson, M.S. & Owen, D.J. Structural basis for binding of accessory proteins by the appendage domain of GGAs. Nat. Struct. Biol. 10, 607–613 (2003).

    Article  CAS  Google Scholar 

  23. Miller, G.J., Mattera, R., Bonifacino, J.S. & Hurley, J.H. Recognition of accessory protein motifs by the γ-adaptin ear domain of GGA3. Nat. Struct. Biol. 10, 599–606 (2003).

    Article  CAS  Google Scholar 

  24. Smith, T.F., Gaitatzes, C., Saxena, K. & Neer, E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999).

    Article  CAS  Google Scholar 

  25. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).

    Article  CAS  Google Scholar 

  26. Scheele, U. et al. Molecular and functional characterization of clathrin and AP-2 binding determinants within a disordered domain of auxilin. J. Biol. Chem. 278, 25357–25368 (2003).

    Article  CAS  Google Scholar 

  27. Lichte, B., Veh, R.W., Meyer, H.E. & Kilimann, M.W. Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J. 11, 2521–2530 (1992).

    Article  CAS  Google Scholar 

  28. De Camilli, P. et al. The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J. Exp. Med. 178, 2219–2223 (1993).

    Article  CAS  Google Scholar 

  29. Sakamuro, D., Elliott, K.J., Wechsler-Reya, R. & Prendergast, G.C. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat. Genet. 14, 69–77 (1996).

    Article  CAS  Google Scholar 

  30. Leprince, C. et al. A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J. Biol. Chem. 272, 15101–15105 (1997).

    Article  CAS  Google Scholar 

  31. Ramjaun, A.R., Micheva, K.D., Bouchelet, I. & McPherson, P.S. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J. Biol. Chem. 272, 16700–16706 (1997).

    Article  CAS  Google Scholar 

  32. Zhang, B. & Zelhof, A.C. Amphiphysins: raising the BAR for synaptic vesicle recycling and membrane dynamics. Traffic 3, 452–460 (2002).

    Article  CAS  Google Scholar 

  33. Ramjaun, A.R., Philie, J., de Heuvel, E. & McPherson, P.S. The N terminus of amphiphysin II mediates dimerization and plasma membrane targeting. J. Biol. Chem. 274, 19785–19791 (1999).

    Article  CAS  Google Scholar 

  34. Takei, K., Slepnev, V.I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33–39 (1999).

    Article  CAS  Google Scholar 

  35. Razzaq, A. et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 15, 2967–2979 (2001).

    Article  CAS  Google Scholar 

  36. Peter, B.J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  Google Scholar 

  37. David, C., McPherson, P.S., Mundigl, O. & De Camilli, P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl. Acad. Sci. USA 93, 331–335 (1996).

    Article  CAS  Google Scholar 

  38. Owen, D.J. et al. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J. 17, 5273–5285 (1998).

    Article  CAS  Google Scholar 

  39. Howard, L., Nelson, K.K., Maciewicz, R.A. & Blobel, C.P. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J. Biol. Chem. 274, 31693–31699 (1999).

    Article  CAS  Google Scholar 

  40. Lundmark, R. & Carlsson, S.R. The β-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2. Biochem. J. 362, 597–607 (2002).

    Article  CAS  Google Scholar 

  41. Macaulay, S.L. et al. Insulin stimulates movement of sorting nexin 9 between cellular compartments-A putative role mediating cell surface receptor expression and insulin action. Biochem. J., 376, 123–134 (2003).

    Article  CAS  Google Scholar 

  42. Lundmark, R. & Carlsson, S.R. Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components. J. Biol. Chem. 278, 46772–46781 (2003).

    Article  CAS  Google Scholar 

  43. Dunker, A.K., Brown, C.J., Lawson, J.D., Iakoucheva, L.M. & Obradovic, Z. Intrinsic disorder and protein function. Biochemistry 41, 6573–6582 (2002).

    Article  CAS  Google Scholar 

  44. Owen, D.J. et al. A structural explanation for the binding of multiple ligands by the α-adaptin appendage domain. Cell 97, 805–815 (1999).

    Article  CAS  Google Scholar 

  45. Leslie, A.G.W. Recent changes to MOSFLM package for processing film and image plate data. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography Vol. 26 (Daresbury Laboratory, Warrington, UK, 1992).

    Google Scholar 

  46. Collaborative Computational Project, the CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  47. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  48. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  49. Segel, I.H. Biochemical Calculations 2nd edn, 150–159 (Wiley, New York, 1976).

    Google Scholar 

  50. Mishra, S.K. et al. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 21, 4915–4926 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of Daresbury Synchrotron Radiation Source and M. Ford for help in data collection, and the Wellcome Trust for a traveling research fellowship to A.E.M. and for a senior research fellowship in basic biomedical sciences to D.J.O. L.M.T. was supported in part by US National Institutes of Health grant R01 DK53249.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linton M Traub or David J Owen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miele, A., Watson, P., Evans, P. et al. Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller. Nat Struct Mol Biol 11, 242–248 (2004). https://doi.org/10.1038/nsmb736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing