Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane

Abstract

Synaptotagmin-1 (syt), the putative Ca2+ sensor for exocytosis, is anchored to the membrane of secretory organelles. Its cytoplasmic domain is composed of two Ca2+-sensing modules, C2A and C2B. Syt binds phosphatidylinositol 4,5-bisphosphate (PIP2), a plasma membrane lipid with an essential role in exocytosis and endocytosis. We resolved two modes of PIP2 binding that are mediated by distinct surfaces on the C2B domain of syt. A novel Ca2+-independent mode of binding predisposes syt to penetrate PIP2-harboring target membranes in response to Ca2+ with submillisecond kinetics. Thus, PIP2 increases the speed of response of syt and steers its membrane-penetration activity toward the plasma membrane. We propose that syt-PIP2 interactions are involved in exocytosis by facilitating the close apposition of the vesicle and target membrane on rapid time scales in response to Ca2+.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two distinct modes of syt-PIP2 interactions.
Figure 2: Mechanism and kinetics of Ca2+-triggered syt-PIP2 interactions.
Figure 3: Specialization of the C2 domains of syt.
Figure 4: PIP2 increases the speed of response of syt.
Figure 5: Steady-state quenching experiments confirm that PIP2 steers the membrane-penetration activity of syt.
Figure 6: Membrane-embedded syt binds, in trans, to acceptor liposomes containing PIP2.
Figure 7: Quantification of trans syt-membrane interactions.

Similar content being viewed by others

References

  1. Katz, B. The Release of Neural Transmitter Substances (Thomas, Springfield, Illinois, USA, 1969).

    Google Scholar 

  2. Augustine, G.J. How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol. 11, 320–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Malenka, R.C. & Nicoll, R.A. Silent synapses speak up. Neuron 19, 473–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Tong, G. & Jahr, C.E. Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12, 51–59 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Choi, S., Klingauf, J. & Tsien, R.W. Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nat. Neurosci. 3, 330–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Renger, J.J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R. & Sudhof, T.C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Craxton, M. Genomic analysis of synaptotagmin genes. Genomics 77, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Brose, N., Petrenko, A.G., Sudhof, T.C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Chapman, E.R. Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat. Rev. Mol. Cell Biol. 3, 498–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Littleton, J.T. et al. synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J. Neurosci. 21, 1421–1433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Mackler, J.M., Drummond, J.A., Loewen, C.A., Robinson, I.M. & Reist, N.E. The C(2)B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418, 340–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Robinson, I.M., Ranjan, R. & Schwarz, T.L. Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C(2)A domain. Nature 418, 336–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez-Chacon, R. et al. Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1. J. Neurosci. 22, 8438–8446 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshihara, M. & Littleton, J.T. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 36, 897–908 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, C.T. et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111–1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Schiavo, G., Gu, Q.M., Prestwich, G.D., Sollner, T.H. & Rothman, J.E. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc. Natl. Acad. Sci. USA 93, 13327–13332 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holz, R.W. et al. A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. J. Biol. Chem. 275, 17878–17885 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Micheva, K.D., Holz, R.W. & Smith, S.J. Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. J. Cell Biol. 154, 355–368 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cremona, O. & De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell Sci. 114, 1041–1052 (2001).

    CAS  PubMed  Google Scholar 

  22. Eberhard, D.A., Cooper, C.L., Low, M.G. & Holz, R.W. Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Biochem. J. 268, 15–25 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hay, J.C. & Martin, T.F. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion. Nature 366, 572–575 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Hay, J.C. et al. ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374, 173–177 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, X., Rizo, J. & Sudhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37, 12395–12403 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Davis, A.F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Bai, J., Wang, P. & Chapman, E.R. C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc. Natl. Acad. Sci. USA 99, 1665–1670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bai, J., Earles, C.A., Lewis, J.L. & Chapman, E.R. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J. Biol. Chem. 275, 25427–25435 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain. Synaptotagmin 1 as a phospholipid binding machine. Neuron 32, 1057–1069 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Wu, Y. et al. Visualization of synaptotagmin I oligomers assembled onto lipid monolayers. Proc. Natl. Acad. Sci. USA 100, 2082–2087 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukuda, M., Kojima, T., Aruga, J., Niinobe, M. & Mikoshiba, K. Functional diversity of C2 domains of synaptotagmin family. Mutational analysis of inositol high polyphosphate binding domain. J. Biol. Chem. 270, 26523–26527 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Mackler, J.M. & Reist, N.E. Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions. J. Comp. Neurol. 436, 4–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Desai, R.C. et al. The C2B domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis. J. Cell Biol. 150, 1125–1136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tucker, W.C. et al. Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells. J. Cell Biol. 162, 199–209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukuda, M. et al. Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. Proc. Natl. Acad. Sci. USA 92, 10708–10712 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bommert, K. et al. Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature 363, 163–165 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Loyet, K.M. et al. Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis. J. Biol. Chem. 273, 8337–8343 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Chung, S.H. et al. The C2 domains of Rabphilin3A specifically bind phosphatidylinositol 4,5-bisphosphate containing vesicles in a Ca2+-dependent manner. In vitro characteristics and possible significance. J. Biol. Chem. 273, 10240–10248 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Burns, M.E., Sasaki, T., Takai, Y. & Augustine, G.J. Rabphilin-3A: a multifunctional regulator of synaptic vesicle traffic. J. Gen. Physiol. 111, 243–255 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schluter, O.M. et al. Rabphilin knock-out mice reveal that rabphilin is not required for rab3 function in regulating neurotransmitter release. J. Neurosci. 19, 5834–5846 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chapman, E.R. & Jahn, R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J. Biol. Chem. 269, 5735–5741 (1994).

    CAS  PubMed  Google Scholar 

  43. Wang, P., Wang, C.T., Bai, J., Jackson, M.B. & Chapman, E.R. Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a non-additive manner. J. Biol. Chem. (2003).

  44. Mahal, L.K., Sequeira, S.M., Gureasko, J.M. & Sollner, T.H. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J. Cell Biol. 158, 273–282 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Earles, C.A., Bai, J., Wang, P. & Chapman, E.R. The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J. Cell Biol. 154, 1117–1123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, X., Kim-Miller, M.J., Fukuda, M., Kowalchyk, J.A. & Martin, T.F. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34, 599–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273, 13995–14001 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Wiedemann, C., Schafer, T., Burger, M.M. & Sihra, T.S. An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. J. Neurosci. 18, 5594–5602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khvotchev, M. & Sudhof, T.C. Newly synthesized phosphatidylinositol phosphates are required for synaptic norepinephrine but not glutamate or γ-aminobutyric acid (GABA) release. J. Biol. Chem. 273, 21451–21454 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Elferink, L.A., Trimble, W.S. & Scheller, R.H. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J. Biol. Chem. 264, 11061–11064 (1989).

    CAS  PubMed  Google Scholar 

  53. Chapman, E.R., Hanson, P.I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270, 23667–23671 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Ubach, J. et al. The C2B domain of synaptotagmin I is a Ca2+-binding module. Biochemistry 40, 5854–5860 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Shao, X., Fernandez, I., Sudhof, T.C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry 37, 16106–16115 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.M. Edwardson, T.F.J. Martin, M. Jackson and C.T. Wang for helpful discussions, and R. Jahn and S. Engers for synaptobrevin-2 antibodies. This study was supported by grants from the US National Institutes of Health (National Institute of General Medical Sciences GM 56827 and National Institute of Mental Health MH61876), American Heart Association (AHA) 9750326N and the Milwaukee Foundation. E.R.C. is a Pew Scholar in the Biomedical Sciences. J.B. is supported by an AHA predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin R Chapman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J., Tucker, W. & Chapman, E. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat Struct Mol Biol 11, 36–44 (2004). https://doi.org/10.1038/nsmb709

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing