Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and dynamics of a molten globular enzyme

Abstract

Although protein dynamics has been recognized as a potentially important contributor to enzyme catalysis, structural disorder is generally considered to reduce catalytic efficiency. This widely held assumption has recently been challenged by the finding that an engineered chorismate mutase combines high catalytic activity with the properties of a molten globule, a loosely packed and highly dynamic conformational ensemble. Taking advantage of the ordering observed upon ligand binding, we have now used NMR spectroscopy to characterize this enzyme in complex with a transition-state analog. The complex adopts a helix-bundle structure, as designed, but retains unprecedented flexibility on the millisecond timescale across its entire length. Moreover, pre–steady-state kinetics data show that binding occurs by an induced-fit mechanism on the same timescale as the enzymatic reaction, linking global conformational plasticity with efficient catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the topologically reengineered chorismate mutase mMjCM.
Figure 2: Stereo view of the mMjCM active site with bound TSA.
Figure 3: Enzyme dynamics on fast and slow timescales.
Figure 4: Pre–steady-state kinetics.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Karplus, M. Dynamics of proteins. Adv. Biophys. 18, 165–190 (1984).

    Article  CAS  Google Scholar 

  2. Hammes, G.G. Multiple conformational changes in enzyme catalysis. Biochemistry 41, 8221–8228 (2002).

    Article  CAS  Google Scholar 

  3. Boehr, D.D., Dyson, H.J. & Wright, P.E. An NMR perspective on enzyme dynamics. Chem. Rev. 106, 3055–3079 (2006).

    Article  CAS  Google Scholar 

  4. Hammes-Schiffer, S. & Benkovic, S.J. Relating protein motion to catalysis. Annu. Rev. Biochem. 75, 519–541 (2006).

    Article  CAS  Google Scholar 

  5. Olsson, M.H.M., Parson, W.W. & Warshel, A. Dynamical contributions to catalysis: critical tests of a popular hypothesis. Chem. Rev. 106, 1737–1756 (2006).

    Article  CAS  Google Scholar 

  6. Dyson, H.J. & Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  Google Scholar 

  7. Dunker, A.K., Brown, C.J., Lawson, J.D., Iakoucheva, L.M. & Obradovic, Z. Intrinsic disorder and protein function. Biochemistry 41, 6573–6582 (2002).

    Article  CAS  Google Scholar 

  8. MacBeath, G., Kast, P. & Hilvert, D. A small, thermostable, and monofunctional chorismate mutase from the archeon Methanococcus jannaschii. Biochemistry 37, 10062–10073 (1998).

    Article  CAS  Google Scholar 

  9. MacBeath, G., Kast, P. & Hilvert, D. Redesigning enzyme topology by directed evolution. Science 279, 1958–1961 (1998).

    Article  CAS  Google Scholar 

  10. Vamvaca, K., Vögeli, B., Kast, P., Pervushin, K. & Hilvert, D. An enzymatic molten globule: efficient coupling of folding and catalysis. Proc. Natl. Acad. Sci. USA 101, 12860–12864 (2004).

    Article  CAS  Google Scholar 

  11. Bartlett, P.A. & Johnson, C.R. An inhibitor of chorismate mutase resembling the transition-state conformation. J. Am. Chem. Soc. 107, 7792–7793 (1985).

    Article  CAS  Google Scholar 

  12. Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The X-plor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    Article  CAS  Google Scholar 

  13. Lee, A.Y., Karplus, P.A., Ganem, B. & Clardy, J. Atomic structure of the buried catalytic pocket of Escherichia coli chorismate mutase. J. Am. Chem. Soc. 117, 3627–3628 (1995).

    Article  CAS  Google Scholar 

  14. Mittermaier, A. & Kay, L.E. New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228 (2006).

    Article  CAS  Google Scholar 

  15. Palmer, A.G. & Massi, F. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 106, 1700–1719 (2006).

    Article  CAS  Google Scholar 

  16. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  17. Jarymowycz, V.A. & Stone, M.J. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 106, 1624–1671 (2006).

    Article  CAS  Google Scholar 

  18. Eletsky, A., Kienhöfer, A., Hilvert, D. & Pervushin, K. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance. Biochemistry 44, 6788–6799 (2005).

    Article  CAS  Google Scholar 

  19. Fersht, A. Structure and Mechanism in Protein Science (W. H. Freeman, New York, 1999).

    Google Scholar 

  20. Koshland, D.E. & Neet, K.E. The catalytic and regulatory properties of enzymes. Annu. Rev. Biochem. 37, 359–410 (1968).

    Article  CAS  Google Scholar 

  21. Williams, D.H., Stephens, E., O'Brien, D.P. & Zhou, M. Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angew. Chem. Int. Ed. Engl. 43, 6596–6616 (2004).

    Article  CAS  Google Scholar 

  22. Weber, G. Energetics of ligand binding to proteins. Adv. Protein Chem. 29, 1–83 (1975).

    Article  CAS  Google Scholar 

  23. Masse, J.E. & Keller, R. AutoLink: automated sequential resonance assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. J. Magn. Reson. 174, 133–151 (2005).

    Article  CAS  Google Scholar 

  24. Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002).

    Article  CAS  Google Scholar 

  25. Mumenthaler, C., Güntert, P., Braun, W. & Wüthrich, K. Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J. Biomol. NMR 10, 351–362 (1997).

    Article  CAS  Google Scholar 

  26. Schwieters, C.D., Kuszewski, J.J. & Clore, G.M. Using Xplor-NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47–62 (2006).

    Article  CAS  Google Scholar 

  27. Güntert, P. Automated NMR protein structure calculation with CYANA. Meth. Mol. Biol. 278, 353–378 (2004).

    Google Scholar 

  28. Korzhnev, D.M., Billeter, M., Arseniev, A.S. & Orekhov, V.Y. NMR studies of Brownian tumbling and internal motions in proteins. Prog. Nucl. Magn. Reson. Spectrosc. 38, 197–266 (2001).

    Article  CAS  Google Scholar 

  29. Mandel, A.M., Akke, M. & Palmer, A.G. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163 (1995).

    Article  CAS  Google Scholar 

  30. Cole, R. & Loria, J.P. FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. J. Biomol. NMR 26, 203–213 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Anikeeva for carrying out preliminary NMR analysis, J. Beld for analytical ultracentrifugation studies, R. Kissner for technical assistance with stopped-flow experiments, and K. Woycechowsky for critical reading of the manuscript. This work was supported by the Schweizerischer Nationalfonds and the ETH Zurich. We dedicate this paper to the memory of D. Koshland.

Author information

Authors and Affiliations

Authors

Contributions

K.P. and D.H designed research; K.P. and B.V. did NMR experiments; K.V. did biochemical experiments; K.P., K.V., B.V. and D.H. analyzed data; K.P., K.V. and D.H. wrote the paper.

Corresponding authors

Correspondence to Konstantin Pervushin or Donald Hilvert.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3, Supplementary Methods (PDF 1322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pervushin, K., Vamvaca, K., Vögeli, B. et al. Structure and dynamics of a molten globular enzyme. Nat Struct Mol Biol 14, 1202–1206 (2007). https://doi.org/10.1038/nsmb1325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing