Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Modifications target spliceosome dynamics

The splicing pathway is dominated by ATP-dependent RNA rearrangements promoted by DEAD-box helicases. Post-translational modifications have now been implicated in the regulation of two DEAD-box proteins that are required for catalytic activation of the spliceosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The steps in spliceosome assembly, catalysis and spliceosome disassembly are shown schematically.
Figure 2: ATP-dependent exchange of RNA pairing partners is mediated by DEAD-box helicases.
Figure 3: Post-translational modifications target spliceosomal dynamics.

References

  1. Staley, J.P. & Guthrie, C. Cell 92, 315–326 (1998).

    Article  CAS  Google Scholar 

  2. Mayas, R.M., Maita, H. & Staley, J.P. Nat. Struct. Mol. Biol. 13, 482–490 (2006).

    Article  CAS  Google Scholar 

  3. Query, C.C. & Konarska, M.M. Nat. Struct. Mol. Biol. 13, 472–474 (2006).

    Article  CAS  Google Scholar 

  4. Mathew, R. et al. Nat. Struct. Mol. Biol. 15, 435–443 (2008).

    Article  CAS  Google Scholar 

  5. Staley, J.P. & Guthrie, C. Mol. Cell 3, 55–64 (1999).

    Article  CAS  Google Scholar 

  6. Bellare, P. et al. Nat. Struct. Mol. Biol. 15, 444–451 (2008).

    Article  CAS  Google Scholar 

  7. Brow, D.A. Annu. Rev. Genet. 36, 333–360 (2002).

    Article  CAS  Google Scholar 

  8. Mermoud, J.E., Cohen, P. & Lamond, A.I. Nucleic Acids Res. 20, 5263–5269 (1992).

    Article  CAS  Google Scholar 

  9. Graveley, B.R. RNA 6, 1197–1211 (2000).

    Article  CAS  Google Scholar 

  10. Sanford, J.R., Ellis, J. & Caceres, J.F. Biochem. Soc. Trans. 33, 443–446 (2005).

    Article  CAS  Google Scholar 

  11. Gui, J.F., Tronchere, H., Chandler, S.D. & Fu, X.D. Proc. Natl. Acad. Sci. USA 91, 10824–10828 (1994).

    Article  CAS  Google Scholar 

  12. Gui, J.F., Lane, W.S. & Fu, X.D. Nature 369, 678–682 (1994).

    Article  CAS  Google Scholar 

  13. Wang, H.Y. et al. Genomics 57, 310–315 (1999).

    Article  CAS  Google Scholar 

  14. Black, D.L. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  Google Scholar 

  15. Teigelkamp, S., Mundt, C., Achsel, T., Will, C.L. & Luhrmann, R. RNA 3, 1313–1326 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Raghunathan, P.L. & Guthrie, C. Curr. Biol. 8, 847–855 (1998).

    Article  CAS  Google Scholar 

  17. Kuhn, A.N., Reichl, E.M. & Brow, D.A. Proc. Natl. Acad. Sci. USA 99, 9145–9149 (2002).

    Article  CAS  Google Scholar 

  18. Grainger, R.J. & Beggs, J.D. RNA 11, 533–557 (2005).

    Article  CAS  Google Scholar 

  19. Bellare, P., Kutach, A.K., Rines, A.K., Guthrie, C. & Sontheimer, E.J. RNA 12, 292–302 (2006).

    Article  CAS  Google Scholar 

  20. Zhang, L. et al. Protein Sci. 16, 1024–1031 (2007).

    Article  CAS  Google Scholar 

  21. Pena, V., Liu, S., Bujnicki, J.M., Luhrmann, R. & Wahl, M.C. Mol. Cell 25, 615–624 (2007).

    Article  CAS  Google Scholar 

  22. Ohi, M.D., Vander Kooi, C.W., Rosenberg, J.A., Chazin, W.J. & Gould, K.L. Nat. Struct. Biol. 10, 250–255 (2003).

    Article  CAS  Google Scholar 

  23. Hicke, L., Schubert, H.L. & Hill, C.P. Nat. Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  24. Verma, R. et al. Science 306, 117–120 (2004).

    Article  CAS  Google Scholar 

  25. Fabrizio, P., Laggerbauer, B., Lauber, J., Lane, W.S. & Luhrmann, R. EMBO J. 16, 4092–4106 (1997).

    Article  CAS  Google Scholar 

  26. Small, E.C., Leggett, S.R., Winans, A.A. & Staley, J.P. Mol. Cell 23, 389–399 (2006).

    Article  CAS  Google Scholar 

  27. Brenner, T.J. & Guthrie, C. Genetics 170, 1063–1080 (2005).

    Article  CAS  Google Scholar 

  28. Siebel, C.W., Feng, L., Guthrie, C. & Fu, X.D. Proc. Natl. Acad. Sci. USA 96, 5440–5445 (1999).

    Article  CAS  Google Scholar 

  29. Dagher, S.F. & Fu, X.D. RNA 7, 1284–1297 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Kress and R. Holmes for helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeder, C., Guthrie, C. Modifications target spliceosome dynamics. Nat Struct Mol Biol 15, 426–428 (2008). https://doi.org/10.1038/nsmb0508-426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0508-426

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing