Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin

Subjects

Abstract

Heterochromatin causes epigenetic repression that can be transmitted through multiple cell divisions. However, the mechanisms underlying silencing and stability of heterochromatin are not fully understood. We show that heterochromatin differs from euchromatin in histone turnover and identify histone deacetylase (HDAC) Clr3 as a factor required for inhibiting histone turnover across heterochromatin domains in Schizosaccharomyces pombe. Loss of RNA-interference factors, Clr4 methyltransferase or HP1 proteins involved in HDAC localization causes increased histone turnover across pericentromeric domains. Clr3 also affects histone turnover at the silent mating-type region, where it can be recruited by alternative mechanisms acting in parallel to H3K9me–HP1. Notably, the JmjC-domain protein Epe1 promotes histone exchange, and loss of Epe1 suppresses both histone turnover and defects in heterochromatic silencing. Our results suggest that heterochromatic-silencing factors preclude histone turnover to promote silencing and inheritance of repressive chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential patterns of histone turnover define heterochromatin and euchromatin domains.
Figure 2: Clr4 and RNAi are required to suppress H3 replacement at centromeres but not at the silent mating-type locus.
Figure 3: HP1 proteins Chp2 and Swi6 cooperate to prevent nucleosome turnover across a pericentromeric loci.
Figure 4: Clr3 HDAC is required for suppression of histone-H3 exchange across heterochromatin domains.
Figure 5: Increased H3 turnover in heterochromatin mutants is not solely due to changes in RNAPII transcription.
Figure 6: The JmjC domain–containing protein Epe1 promotes histone turnover across the pericentromeric regions.
Figure 7: Clr3-dependent suppression of histone turnover correlates with epigenetic stability of heterochromatin.
Figure 8: Model showing effects of factors that affect the epigenetic stability of heterochromatin.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  PubMed  Google Scholar 

  2. Grewal, S.I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  4. Richards, E.J. & Elgin, S.C. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Zofall, M. et al. RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335, 96–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Cam, H.P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37, 809–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Partridge, J.F., Borgstrom, B. & Allshire, R.C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Noma, K., Allis, C.D. & Grewal, S.I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Djupedal, I. et al. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev. 19, 2301–2306 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kato, H. et al. RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309, 467–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, K., Mosch, K., Fischle, W. & Grewal, S.I. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bayne, E.H. et al. Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140, 666–677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia, S., Noma, K. & Grewal, S.I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Reyes-Turcu, F.E., Zhang, K., Zofall, M., Chen, E. & Grewal, S.I. Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat. Struct. Mol. Biol. 18, 1132–1138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hall, I.M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Noma, K. et al. RITS acts in cis to promote RNA interference–mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174–1180 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Noma, K., Cam, H.P., Maraia, R.J. & Grewal, S.I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Schalch, T. et al. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol. Cell 34, 36–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sadaie, M., Iida, T., Urano, T. & Nakayama, J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J. 23, 3825–3835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamada, T., Fischle, W., Sugiyama, T., Allis, C.D. & Grewal, S.I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell 20, 173–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128, 491–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Motamedi, M.R. et al. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol. Cell 32, 778–790 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fischer, T. et al. Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc. Natl. Acad. Sci. USA. 106, 8998–9003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamane, K. et al. Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci. Mol. Cell 41, 56–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zofall, M. & Grewal, S.I. Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol. Cell 22, 681–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Isaac, S. et al. Interaction of Epe1 with the heterochromatin assembly pathway in Schizosaccharomyces pombe. Genetics 175, 1549–1560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trewick, S.C., Minc, E., Antonelli, R., Urano, T. & Allshire, R.C. The JmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin. EMBO J. 26, 4670–4682 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat. Rev. Genet. 9, 15–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Dion, M.F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Jamai, A., Imoberdorf, R.M. & Strubin, M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 25, 345–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Rufiange, A., Jacques, P.E., Bhat, W., Robert, F. & Nourani, A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27, 393–405 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Deal, R.B., Henikoff, J.G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garcia, J.F., Dumesic, P.A., Hartley, P.D., El-Samad, H. & Madhani, H.D. Combinatorial, site-specific requirement for heterochromatic silencing factors in the elimination of nucleosome-free regions. Genes Dev. 24, 1758–1771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi, E.S., Shin, J.A., Kim, H.S. & Jang, Y.K. Dynamic regulation of replication independent deposition of histone H3 in fission yeast. Nucleic Acids Res. 33, 7102–7110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iacovoni, J.S., Russell, P. & Gaits, F. A new inducible protein expression system in fission yeast based on the glucose-repressed inv1 promoter. Gene 232, 53–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Lantermann, A.B. et al. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 17, 251–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Thon, G., Cohen, A. & Klar, A.J. Three additional linkage groups that repress transcription and meiotic recombination in the mating-type region of Schizosaccharomyces pombe. Genetics 138, 29–38 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cam, H.P., Noma, K., Ebina, H., Levin, H.L. & Grewal, S.I. Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 451, 431–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Mito, Y., Henikoff, J.G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37, 1090–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Schwabish, M.A. & Struhl, K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell Biol. 24, 10111–10117 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Venkatesh, S. et al. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 489, 452–455 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain–containing proteins. Nature 439, 811–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Braun, S. et al. The Cul4-Ddb1(Cdt)(2) ubiquitin ligase inhibits invasion of a boundary-associated antisilencing factor into heterochromatin. Cell 144, 41–54 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ayoub, N. et al. A novel jmjC domain protein modulates heterochromatization in fission yeast. Mol. Cell Biol. 23, 4356–4370 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grewal, S.I. & Klar, A.J. A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. Genetics 146, 1221–1238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Grewal, S.I., Bonaduce, M.J. & Klar, A.J. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150, 563–576 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wirén, M. et al. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J. 24, 2906–2918 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kasten, M. et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23, 1348–1359 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alfredsson-Timmins, J., Kristell, C., Henningson, F., Lyckman, S. & Bjerling, P. Reorganization of chromatin is an early response to nitrogen starvation in Schizosaccharomyces pombe. Chromosoma 118, 99–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Canzio, D. et al. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol. Cell 41, 67–81 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kiely, C.M. et al. Spt6 is required for heterochromatic silencing in the fission yeast Schizosaccharomyces pombe. Mol. Cell Biol. 31, 4193–4204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nicolas, E. et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat. Struct. Mol. Biol. 14, 372–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Folco, H.D., Pidoux, A.L., Urano, T. & Allshire, R.C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319, 94–97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to J. Barrowman for editing the manuscript, K. Zhang, K. Yamane and E. Luk for discussions, members of the Grewal laboratory for their help and P. Russell (Scripps Research Institute, La Jolla, California, USA) for the gift of pINV1 plasmid. This work is supported by the Intramural Research Program of the US National Institutes of Health, National Cancer Institute. O.A. was supported by a European Molecular Biology Organization long-term post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

O.A. and S.I.S.G. designed research, O.A. performed all experiments, S.M. helped with microarray probe design, and O.A. and S.I.S.G. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Shiv I S Grewal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 3058 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aygün, O., Mehta, S. & Grewal, S. HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin. Nat Struct Mol Biol 20, 547–554 (2013). https://doi.org/10.1038/nsmb.2565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing