Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

Abstract

Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the experimental setup to measure structural kinetics and solvation dynamics of metalloenzymes in real time.
Figure 2: Real-time spectroscopic analysis of metalloenzyme (MT1-MMP) catalysis of the peptide substrate Mca-PLGL(Dnp)AR.
Figure 3: Analysis of time-dependent X-ray absorption spectra.
Figure 4: Changes in hydration dynamics are mostly associated with Michaelis complex formation.
Figure 5: Gradient of coupled protein-water motions.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Koshland, D.E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44, 98–104 (1958).

    Article  CAS  Google Scholar 

  2. Benkovic, S.J., Hammes, G.G. & Hammes-Schiffer, S. Free-energy landscape of enzyme catalysis. Biochemistry 47, 3317–3321 (2008).

    Article  CAS  Google Scholar 

  3. Henzler-Wildman, K.A. et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913–916 (2007).

    Article  CAS  Google Scholar 

  4. Benkovic, S.J. & Hammes-Schiffer, S. A perspective on enzyme catalysis. Science 301, 1196–1202 (2003).

    Article  CAS  Google Scholar 

  5. Bourgeois, D. & Royant, A. Advances in kinetic protein crystallography. Curr. Opin. Struct. Biol. 15, 538–547 (2005).

    Article  CAS  Google Scholar 

  6. Dodson, G.G., Lane, D.P. & Verma, C.S. Molecular simulations of protein dynamics: new windows on mechanisms in biology. EMBO Rep. 9, 144–150 (2008).

    Article  CAS  Google Scholar 

  7. Eisenmesser, E.Z. et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117–121 (2005).

    Article  CAS  Google Scholar 

  8. Mittermaier, A. & Kay, L.E. New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228 (2006).

    Article  CAS  Google Scholar 

  9. Pieper, J. et al. Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering. Biochemistry 46, 11398–11409 (2007).

    Article  CAS  Google Scholar 

  10. Schotte, F. et al. Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 1944–1947 (2003).

    Article  CAS  Google Scholar 

  11. Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000).

    Article  CAS  Google Scholar 

  12. Nashine, V.C., Hammes-Schiffer, S. & Benkovic, S.J. Coupled motions in enzyme catalysis. Curr. Opin. Chem. Biol. 14, 644–651 (2010).

    Article  CAS  Google Scholar 

  13. Kamerlin, S.C. & Warshel, A. At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwartz, S.D. & Schramm, V.L. Enzymatic transition states and dynamic motion in barrier crossing. Nat. Chem. Biol. 5, 551–558 (2009).

    Article  CAS  Google Scholar 

  15. Marlow, M.S., Dogan, J., Frederick, K.K., Valentine, K.G. & Wand, A.J. The role of conformational entropy in molecular recognition by calmodulin. Nat. Chem. Biol. 6, 352–358 (2010).

    Article  CAS  Google Scholar 

  16. Barron, L.D., Hecht, L. & Wilson, G. The lubricant of life: a proposal that solvent water promotes extremely fast conformational fluctuations in mobile heteropolypeptide structure. Biochemistry 36, 13143–13147 (1997).

    Article  CAS  Google Scholar 

  17. Fenimore, P.W., Frauenfelder, H., McMahon, B.H. & Young, R.D. Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA 101, 14408–14413 (2004).

    Article  CAS  Google Scholar 

  18. Frauenfelder, H., Fenimore, P.W., Chen, G. & McMahon, B.H. Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci. USA 103, 15469–15472 (2006).

    Article  CAS  Google Scholar 

  19. Hunt, N.T., Kattner, L., Shanks, R.P. & Wynne, K. The dynamics of water-protein interaction studied by ultrafast optical Kerr-effect spectroscopy. J. Am. Chem. Soc. 129, 3168–3172 (2007).

    Article  CAS  Google Scholar 

  20. Dér, A. et al. Interfacial water structure controls protein conformation. J. Phys. Chem. B 111, 5344–5350 (2007).

    Article  Google Scholar 

  21. Papoian, G.A., Ulander, J., Eastwood, M.P., Luthey-Schulten, Z. & Wolynes, P.G. Water in protein structure prediction. Proc. Natl. Acad. Sci. USA 101, 3352–3357 (2004).

    Article  CAS  Google Scholar 

  22. Klibanov, A.M. Improving enzymes by using them in organic solvents. Nature 409, 241–246 (2001).

    Article  CAS  Google Scholar 

  23. Levitt, M. & Park, B.H. Water: now you see it, now you don't. Structure 1, 223–226 (1993).

    Article  CAS  Google Scholar 

  24. Levy, Y. & Onuchic, J.N. Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 35, 389–415 (2006).

    Article  CAS  Google Scholar 

  25. Cheung, M.S., Garcia, A.E. & Onuchic, J.N. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl. Acad. Sci. USA 99, 685–690 (2002).

    Article  CAS  Google Scholar 

  26. Rhee, Y.M., Sorin, E.J., Jayachandran, G., Lindahl, E. & Pande, V.S. Simulations of the role of water in the protein-folding mechanism. Proc. Natl. Acad. Sci. USA 101, 6456–6461 (2004).

    Article  CAS  Google Scholar 

  27. Chaplin, M. Do we underestimate the importance of water in cell biology? Nat. Rev. Mol. Cell Biol. 7, 861–866 (2006).

    Article  CAS  Google Scholar 

  28. Eisenmesser, E.Z., Bosco, D.A., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1520–1523 (2002).

    Article  CAS  Google Scholar 

  29. Robinson, C.R. & Sligar, S.G. Changes in solvation during DNA binding and cleavage are critical to altered specificity of the EcoRI endonuclease. Proc. Natl. Acad. Sci. USA 95, 2186–2191 (1998).

    Article  CAS  Google Scholar 

  30. Durin, G. et al. Simultaneous measurements of solvent dynamics and functional kinetics in a light-activated enzyme. Biophys. J. 96, 1902–1910 (2009).

    Article  CAS  Google Scholar 

  31. Daniel, R.M., Dunn, R.V., Finney, J.L. & Smith, J.C. The role of dynamics in enzyme activity. Annu. Rev. Biophys. Biomol. Struct. 32, 69–92 (2003).

    Article  CAS  Google Scholar 

  32. Kleifeld, O., Frenkel, A., Martin, J.M. & Sagi, I. Active site electronic structure and dynamics during metalloenzyme catalysis. Nat. Struct. Biol. 10, 98–103 (2003).

    Article  CAS  Google Scholar 

  33. Solomon, A., Akabayov, B., Frenkel, A., Milla, M.E. & Sagi, I. Key feature of the catalytic cycle of TNF-alpha converting enzyme involves communication between distal protein sites and the enzyme catalytic core. Proc. Natl. Acad. Sci. USA 104, 4931–4936 (2007).

    Article  CAS  Google Scholar 

  34. Kim, S.J., Born, B., Havenith, M. & Gruebele, M. Real-time detection of protein-water dynamics upon protein folding by terahertz absorption spectroscopy. Angew. Chem. Int. Edn Engl. 47, 6486–6489 (2008).

    Article  CAS  Google Scholar 

  35. Osenkowski, P., Toth, M. & Fridman, R. Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP). J. Cell. Physiol. 200, 2–10 (2004).

    Article  CAS  Google Scholar 

  36. Neumann, U., Kubota, H., Frei, K., Ganu, V. & Leppert, D. Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal. Biochem. 328, 166–173 (2004).

    Article  CAS  Google Scholar 

  37. Ebbinghaus, S. et al. An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA 104, 20749–20752 (2007).

    Article  CAS  Google Scholar 

  38. Heugen, U. et al. Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proc. Natl. Acad. Sci. USA 103, 12301–12306 (2006).

    Article  CAS  Google Scholar 

  39. Heyden, M. et al. Dissecting the THz spectrum of liquid water from first principles through correlations in time and space. Proc. Natl. Acad. Sci. USA 107, 12068–12073 (2010).

    Article  CAS  Google Scholar 

  40. Pal, S.K., Peon, J. & Zewail, A.H. Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. Proc. Natl. Acad. Sci. USA 99, 1763–1768 (2002).

    Article  CAS  Google Scholar 

  41. Fenimore, P.W., Frauenfelder, H., McMahon, B.H. & Parak, F.G. Slaving: solvent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. USA 99, 16047–16051 (2002).

    Article  CAS  Google Scholar 

  42. Arikawa, T., Nagai, M. & Tanaka, K. Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 457, 12–17 (2008).

    Article  CAS  Google Scholar 

  43. Heyden, M. & Havenith, M. Combining THz spectroscopy and MD simulations to study protein-hydration coupling. Methods 52, 74–83 (2010).

    Article  CAS  Google Scholar 

  44. Rosenblum, G. et al. Molecular structures and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: challenging the cysteine switch dogma. J. Am. Chem. Soc. 129, 13566–13574 (2007).

    Article  CAS  Google Scholar 

  45. Frenkel, A.I., Kleifeld, O., Wasserman, S.R. & Sagi, I. Phase speciation by extended X-ray absorption fine structure spectroscopy. J. Chem. Phys. 116, 9449–9456 (2002).

    Article  CAS  Google Scholar 

  46. Nagase, H., Fields, C.G. & Fields, G.B. Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). J. Biol. Chem. 269, 20952–20957 (1994).

    CAS  PubMed  Google Scholar 

  47. Fernandez-Catalan, C. et al. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J. 17, 5238–5248 (1998).

    Article  CAS  Google Scholar 

  48. Grossman, M. et al. The intrinsic protein flexibility of endogenous protease inhibitor TIMP-1 controls its binding interface and affects its function. Biochemistry 49, 6184–6192 (2010).

    Article  CAS  Google Scholar 

  49. Bruice, T.C. & Benkovic, S.J. Chemical basis for enzyme catalysis. Biochemistry 39, 6267–6274 (2000).

    Article  CAS  Google Scholar 

  50. Agarwal, P.K. Role of protein dynamics in reaction rate enhancement by enzymes. J. Am. Chem. Soc. 127, 15248–15256 (2005).

    Article  CAS  Google Scholar 

  51. Exter, M.v., Fattinger, C. & Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 14, 1128–1130 (1989).

    Article  CAS  Google Scholar 

  52. Kindt, J.T. & Schmuttenmaer, C.A. Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 100, 10373–10379 (1996).

    Article  CAS  Google Scholar 

  53. Lee, M.H., Rapti, M., Knauper, V. & Murphy, G. Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. J. Biol. Chem. 279, 17562–17569 (2004).

    Article  CAS  Google Scholar 

  54. Spoel, D.V.D. et al. GROMACS: Fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  Google Scholar 

  55. Scott, W.R.P. et al. The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Frenkel (Yeshiva University), J. Bohon, M. Sullivan (beam line X3B at the National Synchrotron Light Source), I. Solomonov and Y. Udi (Weizmann Institute of Science) for help with X-ray absorption data collection, and we thank M. Krüger (Ruhr-University Bochum) for programming the THz data acquisition software. We thank G. Murphy (Cambridge Research Institute) for the plasmid encoding TIMP-2. We acknowledge financial support by the Ministry of Innovation, Science, Research and Technology of the German state of North Rhine-Westphalia and by the Ruhr-University Bochum and thank the Ressourcenverbund North Rhine-Westphalia for computer time. B.B. and M.He. were members of the Ruhr-University Research School funded by Germany's Excellence Initiative (DFG GSC 98/1). B.B. is grateful to the Feinberg Graduate School at the Weizmann Institute for a Dean of Faculty fellowship. M.He. was a fellow of the Studienstiftung des Deutschen Volkes. G.B.F. is supported by the Robert A. Welch Foundation. G.B.F. and I.S. are supported by a US National Institutes of Health grant (CA098799). I.S. is supported by the Israel Science Foundation, the Kimmelman Center at the Weizmann Institute and the Ambach family fund. M.Ha. is supported by the VW Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

I.S. and M.Ha. are equal contributors and designed the experiments, analyzed the data and wrote the manuscript. M.G., B.B. and M.He. are equal contributors and conducted the research, analyzed the data and wrote the manuscript. D.T. constructed the enzyme-substrate docking model. G.B.F. provided the substrates.

Corresponding authors

Correspondence to Irit Sagi or Martina Havenith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Methods (PDF 1549 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossman, M., Born, B., Heyden, M. et al. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat Struct Mol Biol 18, 1102–1108 (2011). https://doi.org/10.1038/nsmb.2120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing