Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reciprocal regulation of the Ca2+ and H+ sensitivity in the SLO1 BK channel conferred by the RCK1 domain

Abstract

Increasing evidence suggests that intracellular H+ directly stimulates large-conductance Ca2+- and voltage-activated K+ (SLO1 BK) channels, thus providing a crucial link between membrane excitability and cell metabolism. Here we report that two histidine residues, His365 and His394, located in the intracellular regulator of conductance for K+ (RCK) 1 domain, serve as the H+ sensors of the SLO1 BK channel. Activation of the channel by H+ requires electrostatic interactions between the histidine residues and a nearby negatively charged residue involved in the channel's high-affinity Ca2+ sensitivity. Reciprocally, His365 and His394 also participate in the Ca2+-dependent activation of the channel, functioning as Ca2+ mimetics once they are protonated. Therefore, a common motif in the RCK1 domain mediates the stimulatory effects of both H+ and Ca2+, and provides a basis for the bidirectional coupling of cell metabolism and membrane electrical excitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low pHi enhances the native and recombinant BK channel activity.
Figure 2: Mutation of two histidine residues located in the RCK1 domain of human SLO1 abolishes the sensitivity to low pHi.
Figure 3: Mutation of His365 and His394.
Figure 4: High-ionic-strength solutions diminish ΔV0.5 caused by lowering pHi from 7.2 to 6.2 in the absence of Ca2+.
Figure 5: Mutation of Asp367 diminishes the pHi sensitivity.
Figure 6: Mutation of His365 and His394 disrupts the Ca2+-dependent activation of SLO1, but fails to alter its Mg2+-dependent activation.

Similar content being viewed by others

References

  1. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    Article  CAS  Google Scholar 

  2. Kann, O. & Kovacs, R. Mitochondria and neuronal activity. Am. J. Physiol. 292, C641–C657 (2007).

    Article  CAS  Google Scholar 

  3. Higo, T. et al. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120, 85–98 (2005).

    Article  CAS  Google Scholar 

  4. Austin, C. & Wray, S. Interactions between Ca2+ and H+ and functional consequences in vascular smooth muscle. Circ. Res. 86, 355–363 (2000).

    Article  CAS  Google Scholar 

  5. Yao, H. & Haddad, G.G. Calcium and pH homeostasis in neurons during hypoxia and ischemia. Cell Calcium 36, 247–255 (2004).

    Article  CAS  Google Scholar 

  6. Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev. 83, 1183–1221 (2003).

    Article  CAS  Google Scholar 

  7. Latorre, R. & Brauchi, S. Large conductance Ca2+-activated K· (BK) channel: activation by Ca2+ and voltage. Biol. Res. 39, 385–401 (2006).

    Article  CAS  Google Scholar 

  8. Toro, L. & Stefani, E. Calcium-activated K+ channels: metabolic regulation. J. Bioenerg. Biomembr. 23, 561–576 (1991).

    Article  CAS  Google Scholar 

  9. Vergara, C., Latorre, R., Marrion, N.V. & Adelman, J.P. Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8, 321–329 (1998).

    Article  CAS  Google Scholar 

  10. Xu, W. et al. Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298, 1029–1033 (2002).

    Article  CAS  Google Scholar 

  11. Gribkoff, V.K. et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat. Med. 7, 471–477 (2001).

    Article  CAS  Google Scholar 

  12. Tseng-Crank, J. et al. Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain. Neuron 13, 1315–1330 (1994).

    Article  CAS  Google Scholar 

  13. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  CAS  Google Scholar 

  14. Jiang, Y., Pico, A., Cadene, M., Chait, B.T. & MacKinnon, R. Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29, 593–601 (2001).

    Article  CAS  Google Scholar 

  15. Magleby, K.L. Gating mechanism of BK (Slo1) channels: so near, yet so far. J. Gen. Physiol. 121, 81–96 (2003).

    Article  CAS  Google Scholar 

  16. Niu, X., Qian, X. & Magleby, K.L. Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage- and Ca2+-activated potassium channel. Neuron 42, 745–756 (2004).

    Article  CAS  Google Scholar 

  17. Horrigan, F.T. & Aldrich, R.W. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120, 267–305 (2002).

    Article  CAS  Google Scholar 

  18. Tang, X.D., Santarelli, L.C., Heinemann, S.H. & Hoshi, T. Metabolic regulation of potassium channels. Annu. Rev. Physiol. 66, 131–159 (2004).

    Article  CAS  Google Scholar 

  19. Tang, X.D. et al. Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425, 531–535 (2003).

    Article  CAS  Google Scholar 

  20. Jaggar, J.H. et al. Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K+ channels. Circ. Res. 97, 805–812 (2005).

    Article  CAS  Google Scholar 

  21. Schubert, R. & Nelson, M.T. Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol. Sci. 22, 505–512 (2001).

    Article  CAS  Google Scholar 

  22. Hayabuchi, Y., Nakaya, Y., Matsuoka, S. & Kuroda, Y. Effect of acidosis on Ca2+-activated K· channels in cultured porcine coronary artery smooth muscle cells. Pflügers Arch. 436, 509–514 (1998).

    Article  CAS  Google Scholar 

  23. Avdonin, V., Tang, X.D. & Hoshi, T. Stimulatory action of internal protons on Slo1 BK channels. Biophys. J. 84, 2969–2980 (2003).

    Article  CAS  Google Scholar 

  24. Church, J., Baxter, K.A. & McLarnon, J.G. pH modulation of Ca2+ responses and a Ca2+-dependent K+ channel in cultured rat hippocampal neurones. J. Physiol. (Lond.) 511, 119–132 (1998).

    Article  CAS  Google Scholar 

  25. Lee, K.K., Fitch, C.A., Lecomte, J.T. & Garcia-Moreno, E.B. Electrostatic effects in highly charged proteins: salt sensitivity of pKa values of histidines in staphylococcal nuclease. Biochemistry 41, 5656–5667 (2002).

    Article  Google Scholar 

  26. Ye, S., Li, Y., Chen, L. & Jiang, Y. Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels. Cell 126, 1161–1173 (2006).

    Article  CAS  Google Scholar 

  27. Xia, X.M., Zeng, X. & Lingle, C.J. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880–884 (2002).

    Article  CAS  Google Scholar 

  28. Shi, J. et al. Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418, 876–880 (2002).

    Article  CAS  Google Scholar 

  29. Zeng, X.H., Xia, X.M. & Lingle, C.J. Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. J. Gen. Physiol. 125, 273–286 (2005).

    Article  CAS  Google Scholar 

  30. Miksovska, J. et al. Distant electrostatic interactions modulate the free energy level of QA- in the photosynthetic reaction center. Biochemistry 35, 15411–15417 (1996).

    Article  CAS  Google Scholar 

  31. Bao, L., Rapin, A.M., Holmstrand, E.C. & Cox, D.H. Elimination of the BKCa channel's high-affinity Ca2+ sensitivity. J. Gen. Physiol. 120, 173–189 (2002).

    Article  CAS  Google Scholar 

  32. Qian, X., Niu, X. & Magleby, K.L. Intra- and intersubunit cooperativity in activation of BK channels by Ca2+. J. Gen. Physiol. 128, 389–404 (2006).

    Article  CAS  Google Scholar 

  33. Cox, D.H., Cui, J. & Aldrich, R.W. Allosteric gating of a large conductance Ca-activated K+ channel. J. Gen. Physiol. 110, 257–281 (1997).

    Article  CAS  Google Scholar 

  34. Roosild, T.P., Miller, S., Booth, I.R. & Choe, S. A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Cell 109, 781–791 (2002).

    Article  CAS  Google Scholar 

  35. Dong, J., Shi, N., Berke, I., Chen, L. & Jiang, Y. Structures of the MthK RCK domain and the effect of Ca2+ on gating ring stability. J. Biol. Chem. 280, 41716–41724 (2005).

    Article  CAS  Google Scholar 

  36. Takahashi, K.I. & Copenhagen, D.R. Modulation of neuronal function by intracellular pH. Neurosci. Res. 24, 109–116 (1996).

    Article  CAS  Google Scholar 

  37. Kelly, T. & Church, J. pH modulation of currents that contribute to the medium and slow afterhyperpolarizations in rat CA1 pyramidal neurones. J. Physiol. (Lond.) 554, 449–466 (2004).

    Article  CAS  Google Scholar 

  38. Filosa, J.A., Dean, J.B. & Putnam, R.W. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J. Physiol. (Lond.) 541, 493–509 (2002).

    Article  CAS  Google Scholar 

  39. Decanniere, C., Van Hecke, P., Vanstapel, F., Ville, H. & Geers, R. Metabolic response to halothane in piglets susceptible to malignant hyperthermia: an in vivo31P-NMR study. J. Appl. Physiol. 75, 955–962 (1993).

    Article  CAS  Google Scholar 

  40. Denton, J.S., McCann, F.V. & Leiter, J.C. CO2 chemosensitivity in Helix aspersa: three potassium currents mediate pH-sensitive neuronal spike timing. Am. J. Physiol. Cell Physiol. 292, C292–C304 (2007).

    Article  CAS  Google Scholar 

  41. Rothman, S.M. & Olney, J.W. Excitotoxicity and the NMDA receptor. Trends Neurosci. 10, 299–302 (1987).

    Article  CAS  Google Scholar 

  42. Maingret, F., Patel, A.J., Lesage, F., Lazdunski, M. & Honore, E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274, 26691–26696 (1999).

    Article  CAS  Google Scholar 

  43. Brelidze, T.I. & Magleby, K.L. Protons block BK channels by competitive inhibition with K· and contribute to the limits of unitary currents at high voltages. J. Gen. Physiol. 123, 305–319 (2004).

    Article  CAS  Google Scholar 

  44. Starkus, J.G., Varga, Z., Schönherr, R. & Heinemann, S.H. Mechanisms of the inhibition of Shaker potassium channels by protons. Pflügers Arch. 447, 44–54 (2003).

    Article  CAS  Google Scholar 

  45. Derst, C. et al. The large conductance Ca2·-activated potassium channel (pSlo) of the cockroach Periplaneta americana: structure, localization in neurons and electrophysiology. Eur. J. Neurosci. 17, 1197–1212 (2003).

    Article  CAS  Google Scholar 

  46. Tammaro, P., Smith, A.L., Hutchings, S.R. & Smirnov, S.V. Pharmacological evidence for a key role of voltage-gated K· channels in the function of rat aortic smooth muscle cells. Br. J. Pharmacol. 143, 303–317 (2004).

    Article  CAS  Google Scholar 

  47. Zar, J.H. Biostatistical Analysis (Prentice Hall, Upper Saddle River, New Jersey, 1999).

    Google Scholar 

  48. Tang, X.D. et al. Oxidative regulation of large conductance calcium-activated potassium channels. J. Gen. Physiol. 117, 253–274 (2001).

    Article  CAS  Google Scholar 

  49. Santarelli, L.C., Wassef, R., Heinemann, S.H. & Hoshi, T. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K· channels. J. Physiol. (Lond.) 571, 329–348 (2006).

    Article  CAS  Google Scholar 

  50. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  51. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.L. Garcia, Merck Research Laboratories, New Jersey, for the original SLO1 construct and R. Latorre and S. Brauchi, Centro de Estudios Científicos, Valdivia, Chile, for the structural model. Supported in part by the US National Institutes of Health and SFB 604 (TP A4).

Author information

Authors and Affiliations

Authors

Contributions

S.H., S.H.H. and T.H. designed the research; S.H., R.X. and T.H. performed the research; S.H., S.H.H., T.H. analyzed the data; S.H., S.H.H. and T.H. wrote the paper.

Corresponding author

Correspondence to Toshinori Hoshi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Table 1 (PDF 806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, S., Xu, R., Heinemann, S. et al. Reciprocal regulation of the Ca2+ and H+ sensitivity in the SLO1 BK channel conferred by the RCK1 domain. Nat Struct Mol Biol 15, 403–410 (2008). https://doi.org/10.1038/nsmb.1398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing