Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covariation of backbone motion throughout a small protein domain

Abstract

The synchronization (correlation) of conformational fluctuations in folded proteins may influence the rates of enzyme catalysis and ligand binding as well as the stabilities of native proteins and their complexes. However, experimental detection of correlated motions remains difficult. Herein, we present an analysis of the covariation of NMR-derived backbone dynamical parameters among a family of ten mutants of a small protein. Both the spatial restriction and the time scales of backbone motions exhibit a higher degree of covariation than would be expected if the internal motions of each group were independent, providing experimental support for correlated dynamics. Application of this approach to other proteins may reveal dynamical correlations that influence catalysis, ligand-binding and/or protein stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon representation of the B1 domain of protein G.
Figure 2: Covariation of dynamics parameters for the B1 domain.
Figure 3: Structural distribution of dynamical covariations.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Knapp, M.J., Rickert, K. & Klinman, J.P. Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. J. Am. Chem. Soc. 124, 3865–3874 (2002).

    Article  CAS  Google Scholar 

  2. Balabin, I.A. & Onuchic, J.N. Dynamically controlled protein tunneling paths in photosynthetic reaction centers. Science 290, 114–117 (2000).

    Article  CAS  Google Scholar 

  3. Bruice, T.C. & Benkovic, S.J. Chemical basis for enzyme catalysis. Biochemistry 39, 6267–6274 (2000).

    Article  CAS  Google Scholar 

  4. Osborne, M.J., Schnell, J., Benkovic, S.J., Dyson, H.J. & Wright, P.E. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry 40, 9846–9859 (2001).

    Article  CAS  Google Scholar 

  5. Matko, J. et al. Correlation between activity and dynamics of the protein matrix of phosphorylase b. Biochemistry 19, 5782–5786 (1980).

    Article  CAS  Google Scholar 

  6. Wand, A.J. Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat. Struct. Biol. 8, 926–931 (2001).

    Article  CAS  Google Scholar 

  7. Wand, A.J. On the dynamic origins of allosteric activation. Science 293, 1395 (2001).

    Article  CAS  Google Scholar 

  8. Viswanathan, M., Linthicum, D.S. & Subramaniam, S. Analysis of correlated motion in antibody combining sites from molecular dynamics simulations. Methods 20, 362–371 (2000).

    Article  CAS  Google Scholar 

  9. Palmer, A.G. III. NMR probes of molecular dynamics: overview and comparison with other techniques. Annu. Rev. Biophys. Biomol. Struct. 30, 129–155 (2001).

    Article  CAS  Google Scholar 

  10. Kay, L.E. Protein dynamics from NMR. Nat. Struct. Biol. Suppl. 5, 513–517 (1998).

  11. Fischer, M.W.F., Majumdar, A. & Zuiderweg, E.R.P. Protein NMR relaxation: theory, applications and outlook. Prog. Nucl. Magn. Reson. Spectros. 33, 207–272 (1998).

    Article  CAS  Google Scholar 

  12. Stone, M.J. NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc. Chem. Res. 34, 379–388 (2001).

    Article  CAS  Google Scholar 

  13. Kay, L.E., Muhandiram, D.R., Wolf, G., Shoelson, S.E. & Forman-Kay, J.D. Correlation between binding and dynamics at SH2 domain interfaces. Nat. Struct. Biol. 5, 156–163 (1998).

    Article  CAS  Google Scholar 

  14. Maler, L., Blankenship, J., Rance, M. & Chazin, W.J. Site-site communication in the EF-hand Ca2+-binding protein calbindin D9k. Nat. Struct. Biol. 7, 245–250 (2000).

    Article  CAS  Google Scholar 

  15. Lee, A.L. & Wand, A.J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504 (2001).

    Article  CAS  Google Scholar 

  16. Li, Z., Raychaudhuri, S. & Wand, A.J. Insights into the local residual entropy of proteins provided by NMR relaxation. Protein Sci. 5, 2647–2650 (1996).

    Article  CAS  Google Scholar 

  17. Akke, M., Bruschweiler, R. & Palmer, A.G. III. NMR order parameters and free energy: an analytical approach and its application to cooperative Ca2+ binding by calbindin D9k . J. Am. Chem. Soc. 115, 9832–9833 (1993).

    Article  CAS  Google Scholar 

  18. Yang, D.W. & Kay, L.E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263, 369–382 (1996).

    Article  CAS  Google Scholar 

  19. Boyle, M. Bacterial Immunoglobulin-Binding Proteins (Academic, San Diego, California, USA, 1990).

    Google Scholar 

  20. Smith, C.K., Withka, J.M. & Regan, L. A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 33, 5510–5517 (1994).

    Article  CAS  Google Scholar 

  21. Stone, M.J., Gupta, S., Snyder, N. & Regan, L. Comparison of protein backbone entropy and β-sheet stability: NMR-derived dynamics of protein G B1 domain mutants. J. Am. Chem. Soc. 123, 185–186 (2001).

    Article  CAS  Google Scholar 

  22. Sheinerman, F.B. & Brooks, C.L. Calculations on folding of segment B1 of Streptococcal protein G. J. Mol. Biol. 278, 439–456 (1998).

    Article  CAS  Google Scholar 

  23. Blanco, F.J. & Serrano, L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur. J. Biochem. 230, 634–649 (1998).

    Article  Google Scholar 

  24. Lee, A.L., Sharp, K.A., Kranz, J.K., Song, X.-J. & Wand, A.J. Temperature dependence of the internal dynamics of a calmodulin-peptide complex. Biochemistry 41, 13814–13825 (2002).

    Article  CAS  Google Scholar 

  25. Daragan, V.A. & Mayo, K.H. A simple approach to analyzing protein side-chain dynamics from 13C NMR relaxation data. J. Magn. Reson. 130, 329–334 (1998).

    Article  CAS  Google Scholar 

  26. Lemaster, D.M. NMR relaxation order parameter analysis of the dynamics of protein side chains. J. Am. Chem. Soc. 121, 1726–1742 (1999).

    Article  CAS  Google Scholar 

  27. Goodman, J.L., Pagel, M.D. & Stone, M.J. Relationships between protein structure and dynamics from a database of NMR-derived backbone order parameters. J. Mol. Biol. 295, 963–978 (2000).

    Article  CAS  Google Scholar 

  28. Fischer, M.W., Zeng, L., Majumdar, A. & Zuiderweg, E.R. Characterizing semilocal motions in proteins by NMR relaxation studies. Proc. Natl. Acad. Sci. USA 95, 8016–8019 (1998).

    Article  CAS  Google Scholar 

  29. Prompers, J.J. & Bruschweiler, R. General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. J. Am. Chem. Soc. 124, 4522–4534 (2002).

    Article  CAS  Google Scholar 

  30. Seewald, M.J. et al. The role of backbone conformational heat capacity in protein stability: temperature dependent dynamics of the B1 domain of Streptococcal protein G. Protein Sci. 9, 1177–1193 (2000).

    Article  CAS  Google Scholar 

  31. Gronenborn, A.M. et al. A novel, highly stable fold of the immunoglobulin binding domain of Streptococcal protein G. Science 253, 657–661 (1991).

    Article  CAS  Google Scholar 

  32. Kuszewski, J., Gronenborn, A.M. & Clore, G.M. Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J. Am. Chem. Soc. 121, 2337–2338 (1999).

    Article  CAS  Google Scholar 

  33. Clore, G.M., Driscoll, P.C., Wingfield, P.T. & Gronenborn, A.M. Analysis of the backbone dynamics of interleukin-1β using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29, 7387–7401 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.L. Vaughn for discussions. This work was supported by grants from the US National Science Foundation and the American Chemical Society Petroleum Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J Stone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, K., Earley, M., Gupta, S. et al. Covariation of backbone motion throughout a small protein domain. Nat Struct Mol Biol 10, 962–965 (2003). https://doi.org/10.1038/nsb991

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing