Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for p38α MAP kinase quinazolinone and pyridol-pyrimidine inhibitor specificity

Abstract

The quinazolinone and pyridol-pyrimidine classes of p38 MAP kinase inhibitors have a previously unseen degree of specificity for p38 over other MAP kinases. Comparison of the crystal structures of p38 bound to four different compounds shows that binding of the more specific molecules is characterized by a peptide flip between Met109 and Gly110. Gly110 is a residue specific to the α, β and γ isoforms of p38. The δ isoform and the other MAP kinases have bulkier residues in this position. These residues would likely make the peptide flip energetically unfavorable, thus explaining the selectivity of binding. To test this hypothesis, we constructed G110A and G110D mutants of p38 and measured the potency of several compounds against them. The results confirm that the selectivity of quinazolinones and pyridol-pyrimidines results from the presence of a glycine in position 110. This unique mode of binding may be exploited in the design of new p38 inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibitors of p38α.
Figure 2: Binding of inhibitors to p38α.
Figure 3: Compound-induced peptide flip in the linker region.
Figure 4: Binding orientation of 3,4-dihydropyridol[3,2-d]pyrimidine and 2(1H)-quinazolinone to p38α.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pearson, G. et al. Mitogen activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001).

    CAS  PubMed  Google Scholar 

  2. Lewis, T., Shapiro, P.S. & Ahn, N.G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49–139 (1998).

    Article  CAS  Google Scholar 

  3. Davis, R.J. Transcriptional regulation by MAP kinases. Mol. Reprod. Dev. 42, 459–467 (1995).

    Article  CAS  Google Scholar 

  4. Cobb, M.H. & Goldsmith, E.J. How MAP kinases are regulated. J. Biol. Chem. 270, 14843–14846 (1995).

    Article  CAS  Google Scholar 

  5. Bokemeyer, D., Sorokin, A. & Dunn, M.J. Multiple intracellular MAP kinase signalling cascades. Kidney Int. 49, 1187–1198 (1996).

    Article  CAS  Google Scholar 

  6. Derijard, B. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037 (1994).

    Article  CAS  Google Scholar 

  7. Han, J., Lee, J.D., Bibbs, L. & Ulevitch, R.J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  CAS  Google Scholar 

  8. Raingeaud, J. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420–7426 (1995).

    Article  CAS  Google Scholar 

  9. Shapiro, L. & Dinarello, C.A. Osmotic regulation of cytokine synthesis in vitro. Proc. Natl. Acad. Sci. USA 92, 12230–12234 (1995).

    Article  CAS  Google Scholar 

  10. Young, P.R. et al. Bicyclic imidazoles inhibit IL-1 and TNF production at the protein level. Agents Actions 39, C67–C69 (1993).

    Article  CAS  Google Scholar 

  11. Guan, Z., Baier, L.D. & Morrison, A.R. p38 mitogen-activated protein kinase down-regulates nitric oxide and up-regulates prostaglandin E2 biosynthesis stimulated by interleukin-1β. J. Biol. Chem. 272, 8083–8089 (1997).

    Article  CAS  Google Scholar 

  12. Raingeaud, J., Whitmarsh, A.J., Barrett, T., Derijard, B. & Davis, R.J. MKK3 and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16, 1247–1255 (1996).

    Article  CAS  Google Scholar 

  13. Wang, X. & Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP(GADD153) by p38 MAP kinase. Science 272, 1347–1349 (1996).

    Article  CAS  Google Scholar 

  14. Han, J., Jiang, Y., Li, Z., Kravchenko, V.V. & Ulevitch, R.J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299 (1997).

    Article  CAS  Google Scholar 

  15. Wu, T. et al. Involvement of 85-kd cytosolic phospholipase A(2) and cyclooxygenase-2 in the proliferation of human cholangiocarcinoma cells. Hepatology 36, 363–373 (2002).

    Article  CAS  Google Scholar 

  16. Yamamori, T. et al. Relationship between p38 mitogen-activated protein kinase and small GTPase Rac for the activation of NADPH oxidase in bovine neutrophils. Biochem. Biophys. Res. Comm. 293, 1571–1578 (2002).

    Article  CAS  Google Scholar 

  17. Revesz, L. et al. SAR of 4-hydroxypiperidine and hydroxyalkayl substituted heterocycles as novel p38 MAP kinase inhibitors. Bioorg. Med. Chem. Lett. 10, 1261–1264 (2000).

    Article  CAS  Google Scholar 

  18. Wilson, K.P. et al. The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase. Chem. Biol. 4, 423–431 (1997).

    Article  CAS  Google Scholar 

  19. Lisnock, J.M. et al. Molecular basis for p38 protein kinase inhibitor specificity. Biochemistry 37, 16573–16581 (1998).

    Article  CAS  Google Scholar 

  20. Wang, Z. et al. Structural basis of inhibitor selectivity in MAP kinases. Structure 6, 1117–1128 (1998).

    Article  CAS  Google Scholar 

  21. Tong, L. et al. A highly specific inhibitor of human p38 MAP kinase binds in the ATP binding pocket. Nat. Struct. Biol. 4, 311–316 (1997).

    Article  CAS  Google Scholar 

  22. Natarajan, S.R. et al. p38 MAP kinase inhibitors part 1: design and development of a new class of potent and highly selective inhibitors based on 3,4-dihydropyrido[3,2-d]pyrimidone scaffold. Bioorg. Med. Chem. Lett. 13, 273–276 (2003).

    Article  CAS  Google Scholar 

  23. Hunt, J.A. et al. p38 inhibitors: piperidine- and 4-aminopiperidine-substituted naphthyridinones, quinolinones, and dihydroquinazolinones. Bioorg. Med. Chem. Lett. 13, 467–470 (2003).

    Article  CAS  Google Scholar 

  24. Stelmach, J.E. et al. Design and synthesis of potent, orally bioavailable dihydroquinazolinone inhibitors of p38 MAP kinase. Bioorg. Med. Chem. Lett. 13, 277–280 (2003).

    Article  CAS  Google Scholar 

  25. Liverton, N.J. et al. Design and synthesis of potent, selective, and orally bioavailable tetrasubstituted imidazole inhibitors of p38 mitogen-activated protein kinase. J. Med. Chem. 42, 2180–2190 (1999).

    Article  CAS  Google Scholar 

  26. Boehm, J.C. & Adams, J.L. New inhibitors of p38 kinase. Expert Opin. Ther. Pat. 10, 25–37 (2000).

    Article  CAS  Google Scholar 

  27. Toledo, L.M., Lydon, N.B. & Elbaum, D. The structure-based design of ATP-site directed protein kinases inhibitors. Curr. Med. Chem. 6, 775–805 (1999).

    CAS  PubMed  Google Scholar 

  28. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M. & Canters, G.W. Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0. A pH-induced conformational transition involves a peptide bond flip. J. Mol. Biol. 221, 765–772 (1991).

    Article  CAS  Google Scholar 

  29. Hayward, S. Peptide-plane flipping in proteins. Protein Sci. 10, 2219–2227 (2001).

    Article  CAS  Google Scholar 

  30. Gunasekaran, K., Gomathi, L., Ramakrishnan, C., Chandrasekhar, J. & Balaram, P. Conformational interconversions in peptide β-turns: analysis of turns in proteins and computational estimates of barriers. J. Mol. Biol. 284, 1505–1516 (1998).

    Article  CAS  Google Scholar 

  31. Pargellis, C. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 9, 268–272 (2002).

    Article  CAS  Google Scholar 

  32. Howard, A.J. Data processing in macromolecular crystallography. In Crystallographic Computing 7: Proceedings from the Macromolecular Crystallographic Computing School, 1996 (eds. Bourne, E.P.E & Watenpaugh, K.D.) (Oxford Univ. Press, Oxford, UK, 2001).

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  34. Wilson, K.P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem. 271, 27696–27700 (1996).

    Article  CAS  Google Scholar 

  35. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  36. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  37. Jones, A.T., Zuo, J.Y., Cowan, S.W. and Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  38. Laskoswski, R.A., MacArthur, M.W., Moss, S.D. & Thornton, J.M. PROCHECK: a programme to check the stereochemical quality of protein structure coordinates. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  Google Scholar 

  39. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the facilities at the IMCA-CAT for help during data collection. The facilities at IMCA-CAT are supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Illinois Institute of Technology (IIT), executed through IIT's Center for Synchrotron Radiation Research and Instrumentation. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen J O'Keefe or Giovanna Scapin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, C., Patel, S., Becker, J. et al. Structural basis for p38α MAP kinase quinazolinone and pyridol-pyrimidine inhibitor specificity. Nat Struct Mol Biol 10, 764–769 (2003). https://doi.org/10.1038/nsb949

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing