Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration

Abstract

The interaction of the plasma protein vitronectin with plasminogen activator inhibitor-1 (PAI-1) is central to human health. Vitronectin binding extends the lifetime of active PAI-1, which controls hemostasis by inhibiting fibrinolysis and has also been implicated in angiogenesis. The PAI-1–vitronectin binding interaction also affects cell adhesion and motility. For these reasons, elevated PAI-1 activities are associated both with coronary thrombosis and with a poor prognosis in many cancers. Here we show the crystal structure at a resolution of 2.3 Å of the complex of the somatomedin B domain of vitronectin with PAI-1. The structure of the complex explains how vitronectin binds to and stabilizes the active conformation of PAI-1. It also explains the tissue effects of PAI-1, as PAI-1 competes for and sterically blocks the interaction of vitronectin with cell surface receptors and integrins. Structural understanding of the essential biological roles of the interaction between PAI-1 and vitronectin opens the prospect of specifically designed blocking agents for the prevention of thrombosis and treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagrams of the complex and its components.
Figure 2: Stereo view of interacting residues in the PAI-1–SMB interface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Preissner, K.T. et al. Structural requirements for the extracellular interaction of plasminogen activator inhibitor-1 with endothelial cell matrix-associated vitronectin. J. Biol. Chem. 265, 18490–18498 (1990).

    CAS  PubMed  Google Scholar 

  2. Kohler, H.P. & Grant, P.J. Plasminogen activator inhibitor type 1 and coronary heart disease. N. Engl. J. Med. 342, 1792–1801 (2000).

    Article  CAS  Google Scholar 

  3. McMahon, G.A. et al. Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J. Biol. Chem. 276, 33964–33968 (2001).

    Article  CAS  Google Scholar 

  4. Devy, L. et al. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J. 16, 147–154 (2002).

    Article  CAS  Google Scholar 

  5. Seiffert, D. & Loskutoff D.J. Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin domain of vitronectin. J. Biol. Chem. 266, 2824–2830 (1991).

    CAS  PubMed  Google Scholar 

  6. Stefansson, S. & Lawrence, D.A. The serpin PAI-1 inhibits cell migration by blocking integrin αVβ3 binding to vitronectin. Nature 383, 441–443 (1996).

    Article  CAS  Google Scholar 

  7. Look, M.P. et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J. Natl. Cancer Inst. 94, 116–128 (2002).

    Article  CAS  Google Scholar 

  8. Hekman, C.M. & Loskutoff, D.J. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J. Biol. Chem. 260, 11581–11587 (1985).

    CAS  PubMed  Google Scholar 

  9. Mottonen, J. et al. Structural basis of latency in plasminogen-activator inhibitor-1. Nature 355, 270–273 (1992).

    Article  CAS  Google Scholar 

  10. Lawrence, D.A. et al. Characterization of the binding of different conformational forms of plasminogen activator inhibitor-1 to vitronectin. J. Biol. Chem. 272, 7676–7680 (1997).

    Article  CAS  Google Scholar 

  11. Schroeck, F., Arroyo de Prada, N., Sperl, S., Schmitt, M. & Magdolen, V. Interaction of plasminogen activator inhibitor type-1 (PAI-1) with vitronectin (Vn): mapping the binding sites on PAI-1 and Vn. Biol. Chem. 383, 1143–1149 (2002).

    Article  CAS  Google Scholar 

  12. Okumura, Y. et al. Kinetic analysis of the interaction between vitronectin and the urokinase receptor. J. Biol. Chem. 277, 9395–9404 (2002).

    Article  CAS  Google Scholar 

  13. Berkenpas, M.B., Lawrence, D.A. & Ginsburg, D. Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J. 14, 2969–2977 (1995).

    Article  CAS  Google Scholar 

  14. Lawrence, D.A., Berkenpas, M.B., Palaniappan, S., & Ginsburg, D. Localization of vitronectin binding domain in plasminogen activator inhibitor-1. J. Biol. Chem. 269, 15223–15228 (1994).

    CAS  PubMed  Google Scholar 

  15. Sigurdardottir, O. & Wiman, B. Studies on the interaction between plasminogen activator inhibitor-1 and vitronectin. Fibrinolysis 6, 27–32 (1992).

    Article  CAS  Google Scholar 

  16. Deng, G., Curriden, S.A., Wang, S., Rosenberg, S. & Loskutoff, D.J. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release? J. Cell Biol. 134, 1563–1571 (1996).

    Article  CAS  Google Scholar 

  17. Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).

    Article  CAS  Google Scholar 

  18. Bajou, K. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4, 923–928 (1998).

    Article  CAS  Google Scholar 

  19. Harbeck, N. et al. Clinical relevance of the plasminogen activator inhibitor type 1 — a multifaceted proteolytic factor. Onkologie 24, 238–244 (2001).

    CAS  PubMed  Google Scholar 

  20. Czekay, R.-P., Aertgeerts, K., Curriden, S.A. & Loskutoff, D.J. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J. Cell Biol. 160, 781–791 (2003).

    Article  CAS  Google Scholar 

  21. Gils, A. et al. Characterization and comparative evaluation of a novel PAI-1 inhibitor. Thromb. Haemost. 88, 137–143 (2002).

    Article  CAS  Google Scholar 

  22. Yoneda, A., Ogawa, H., Kojima, K. & Matsumoto, I. Characterization of the ligand binding activities of vitronectin: interaction of vitronectin with lipids and identification of the binding domains for various ligands using recombinant domains. Biochemistry 37, 6351–6360 (1998).

    Article  CAS  Google Scholar 

  23. Sharp, A.M. et al. The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure Fold. Des. 7, 111–118 (1999).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D 57, 1373–1382 (2001).

    Article  CAS  Google Scholar 

  26. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  29. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  30. Laskowski, R.A., Moss, D.S. & Thornton, J.M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993).

    Article  CAS  Google Scholar 

  31. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  32. Merritt, E.A. & Bacon, D.J. Raster3D photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  33. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Duke for assistance in collecting data at the APS and A. McCoy for advice on fitting the somatomedin B domain to the initial electron density maps. H. Ogawa kindly provided cDNA for vitronectin. Use of the SBC beamline at the APS was supported by the US Department of Energy Office of Biological and Environmental Research. Beamtime at station 14.2 of Daresbury SRS was provided by CLRC Daresbury Laboratory. R.J.R. and R.W.C. were supported by the Wellcome Trust (UK) and J.A.H. by the Medical Research Council (UK) and National Institutes of Health (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy J Read.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, A., Huntington, J., Pannu, N. et al. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Mol Biol 10, 541–544 (2003). https://doi.org/10.1038/nsb943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb943

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing