Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular switch between alternative conformational states in the complex of Ran and importin β1

Abstract

Several million macromolecules are exchanged each minute between the nucleus and cytoplasm by receptor-mediated transport. Most of this traffic is controlled by the small GTPase Ran, which regulates assembly and disassembly of the receptor–cargo complexes in the appropriate cellular compartment. Here we applied dynamic force spectroscopy to study the interaction of Ran with the nuclear import receptor importin β1 (impβ) at the single-molecule level. We found that the complex alternates between two distinct conformational states of different adhesion strength. The application of an external mechanical force shifts equilibrium toward one of these states by decreasing the height of the interstate activation energy barrier. The other state can be stabilized by a functional Ran mutant that increases this barrier. These results support a model whereby functional control of Ran–impβ is achieved by a population shift between pre-existing alternative conformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement of single-molecule unbinding forces.
Figure 2: Molecular unbinding of different Ran–impβ complexes.
Figure 3: The Ran–GTP–impβ interaction.

Similar content being viewed by others

References

  1. Smith, A.E., Slepchenko, B.M., Schaff, J.C., Loew, L.M. & Macara, I.G. Systems analysis of Ran transport. Science 295, 488–91 (2002).

    Article  CAS  Google Scholar 

  2. Kuersten, S., Ohno, M. & Mattaj, I.W. Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell. Biol. 11, 497–503 (2001).

    Article  CAS  Google Scholar 

  3. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell. Dev. Biol. 15, 607–660 (1999).

    Article  CAS  Google Scholar 

  4. Mattaj, I.W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    Article  CAS  Google Scholar 

  5. Kumar, S., Ma, B., Tsai, C.J., Sinha, N. & Nussinov, R. Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci. 9, 10–19 (2000).

    Article  CAS  Google Scholar 

  6. Tang, K.E.S. & Dill, K.A. How experiments see fluctuations of native proteins: perspective from an exact model. Int. J. Quantum Chem. 75, 147–164 (1999).

    Article  CAS  Google Scholar 

  7. Binnig, G., Quate, C.F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  8. Florin, E.L., Moy, V.T. & Gaub, H.E. Adhesion forces between individual ligand- receptor pairs. Science 264, 415–417 (1994).

    Article  CAS  Google Scholar 

  9. Lee, G.U., Kidwell, D.A. & Colton, R.J. Sensing discrete streptavidin biotin interactions with atomic-force microscopy. Langmuir 10, 354–357 (1994).

    Article  CAS  Google Scholar 

  10. Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477–3481 (1996).

    Article  CAS  Google Scholar 

  11. Evans, E. Probing the relation between force—lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  12. Evans, E. Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss. 111, 1–16 (1998).

    Article  CAS  Google Scholar 

  13. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  14. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  15. Strunz, T., Oroszlan, K., Schafer, R. & Guntherodt, H.J. Dynamic force spectroscopy of single DNA molecules. Proc. Natl. Acad. Sci. USA 96, 11277–11282. (1999).

    Article  CAS  Google Scholar 

  16. Baumgartner, W. et al. Cadherin interaction probed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 97, 4005–4010 (2000).

    Article  CAS  Google Scholar 

  17. Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378–381 (1995).

    Article  CAS  Google Scholar 

  18. Stewart, M., Kent, H.M. & McCoy, A.J. Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase Ran. J. Mol. Biol. 277, 635–646 (1998).

    Article  CAS  Google Scholar 

  19. Vetter, I.R., Arndt, A., Kutay, U., Gorlich, D. & Wittinghofer, A. Structural view of the Ran-Importin β interaction at 2.3 Å resolution. Cell 97, 635–646 (1999).

    Article  CAS  Google Scholar 

  20. Vetter, I.R., Nowak, C., Nishimoto, T., Kuhlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46 (1999).

    Article  CAS  Google Scholar 

  21. Villa Braslavsky, C.I., Nowak, C., Gorlich, D., Wittinghofer, A. & Kuhlmann, J. Different structural and kinetic requirements for the interaction of Ran with the Ran-binding domains from RanBP2 and importin-β. Biochemistry 39, 11629–11639 (2000).

    Article  CAS  Google Scholar 

  22. Bartolo, D., Derenyi, I. & Ajdari, A. Dynamic response of adhesion complexes: beyond the single-path picture. Phys. Rev. E 65, 051910 (2002).

    Article  Google Scholar 

  23. Klebe, C., Bischoff, F.R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639–647 (1995).

    Article  CAS  Google Scholar 

  24. Stewart, M., Kent, H.M. & McCoy, A.J. The structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2). J. Mol. Biol. 284, 1517–1527 (1998).

    Article  CAS  Google Scholar 

  25. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  Google Scholar 

  26. Malmendal, A., Evenas, J., Forsen, S. & Akke, M. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. J Mol. Biol. 293, 883–899 (1999).

    Article  CAS  Google Scholar 

  27. Cingolani, G., Petosa, C., Weis, K. & Muller, C.W. Structure of importin-β bound to the IBB domain of importin-β. Nature 399, 221–229 (1999).

    Article  CAS  Google Scholar 

  28. Lee, S.J. et al. The adoption of a twisted structure of importin-β is essential for the protein-protein interaction required for nuclear transport. J. Mol. Biol. 302, 251–264 (2000).

    Article  CAS  Google Scholar 

  29. Chook, Y.M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2-Ran × GppNHp. Nature 399, 230–237 (1999).

    Article  CAS  Google Scholar 

  30. Chook, Y.M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).

    Article  CAS  Google Scholar 

  31. Geyer, M. et al. Conformational states of the nuclear GTP-binding protein Ran and its complexes with the exchange factor RCC1 and the effector protein RanBP1. Biochemistry 38, 11250–11260 (1999).

    Article  CAS  Google Scholar 

  32. Geyer, M. et al. Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry 35, 10308–10320 (1996).

    Article  CAS  Google Scholar 

  33. Chi, N.C., Adam, E.J., Visser, G.D. & Adam, S.A. RanBP1 stabilizes the interaction of Ran with p97 nuclear protein import. J. Cell Biol. 135, 559–569 (1996).

    Article  CAS  Google Scholar 

  34. Hinterdorfer, P. et al. Surface attachment of ligands and receptors for molecular recognition force microscopy. Colloids Surf. B 23, 115–123 (2002).

    Article  CAS  Google Scholar 

  35. Raab, A. et al. Antibody recognition imaging by force microscopy. Nat. Biotechnol. 17, 901–905 (1999).

    Article  CAS  Google Scholar 

  36. Hutter, J.L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  37. Baumgartner, W., Hinterdorfer, P. & Schindler, H. Data analysis of interaction forces measured with the atomic force microscope. Ultramicroscopy 82, 85–95 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Riener and H. Gruber for the synthesis of the PEG spacers, O. Bogin for his help in the expression of impβ and RanQ69L, and D. Görlich for providing an expression construct for impβ. We also thank J. Klafter, A. Filippov, A. Minsky, D. Tawfik, M. Urbakh and E.J. Wachtel for helpful discussions and comments. This work was supported by the Charles H. Revson Foundation (Israel Science Foundation) and the Austrian National Science Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziv Reich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevo, R., Stroh, C., Kienberger, F. et al. A molecular switch between alternative conformational states in the complex of Ran and importin β1. Nat Struct Mol Biol 10, 553–557 (2003). https://doi.org/10.1038/nsb940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing