Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases

Abstract

A family of eukaryotic-like Ser/Thr protein kinases occurs in bacteria, but little is known about the structures and functions of these proteins. Here we characterize PknB, a transmembrane signaling kinase from Mycobacterium tuberculosis. The intracellular PknB kinase domain is active autonomously, and the active enzyme is phosphorylated on residues homologous to regulatory phospho-acceptors in eukaryotic Ser/Thr kinases. The crystal structure of the PknB kinase domain in complex with an ATP analog reveals the active conformation. The predicted fold of the PknB extracellular domain matches the proposed targeting domain of penicillin-binding protein 2x. The structural and chemical similarities of PknB to metazoan homologs support a universal activation mechanism of Ser/Thr protein kinases in prokaryotes and eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of PknB and phosphorylation of the intracellular domain.
Figure 2: Crystal structure of the intracellular domain of PknB in complex with ATP-γ-S.
Figure 3: Similarity of the PknB kinase domain and activated eukaryotic Ser/Thr kinases.
Figure 4: Conserved surface sites in PknB.
Figure 5: Model of full-length PknB.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cheek, S., Zhang, H., & Grishin, N.V. Sequence and structure classification of kinases. J. Mol. Biol. 320, 855–881 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (2000).

    Article  Google Scholar 

  4. Av-Gay, Y. & Everett, M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol. 8, 238–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Andersen, P. TB vaccines: progress and problems. Trends Immunol. 22, 160–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Ono-Saito, N., Niki, I. & Hidaka, H. H-series protein kinase inhibitors and potential clinical applications. Pharmacol. Ther. 82, 123–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Drews, S.J., Hung, F. & Av-Gay, Y. A protein kinase inhibitor as an antimicrobial agent. FEMS Microbiol. Lett. 205, 369–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Chaba, R., Raje, M. & Chakrobarti, P.K. Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur. J. Biochem. 269, 1078–1085 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Av-Gay, Y., Jamil, S. & Drews, S.J. Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infection Immunol. 67, 5676–5682 (1999).

    CAS  Google Scholar 

  10. Koul. A. et al. Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. Microbiology 147, 2307–2314 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Huse, M. & J. Kuriyan . The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Niefind, K., Guerra, B., Ermakowa, I. & Issinger, O.G. Crystal structure of human protein kinase Ck2: Insights into basic properties of the Ck2 holoenzyme. Embo J. 20, 5320–5331 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Madhusudan, Akamine, P., Xuong, N.-H. & Taylor, S.S. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 9, 273–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg J., Nairn, A.C., & Kuriyan, J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kelley, L.A., MacCallum, R.M. & Sternberg, M.J. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Gordon, E., Mouz, N., Duee, E. & Dideberg, O. The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J. Mol. Biol. 299, 477–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Marchler-Bauer, A. et al. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res. 30, 281–283 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeats, C. Finn, R.D. & Bateman, A. The PASTA domain: a β-lactam binding domain. Trends Biochem. Sci. 9, 438–40 (2002).

    Article  Google Scholar 

  19. Schulze-Gahmen, U., et al. Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins 22, 378–391 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Xie, X. et al. Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure 6, 983–991 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang F., Strand A., Robbins D., Cobb M.H., & Goldsmith E.J. Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367, 704–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, W., Doshi, A., Lei, M., Eck, M.J. & Harrison, S.C. Crystal structures of c-Src reveal new features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Leonard, C.J., Aravind, L. & Koonin, E.V. Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res. 8, 1038–1047 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Han, G. & Zhang, C.-C. On the origin of Ser/Thr kinases in a prokaryote. FEMS Microbiol. Lett. 200, 79–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Young, M.A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Juris S.J., Rudolph, A.E., Huddler, D., Orth, K. & Dixon, J.E. A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. Proc. Natl. Acad. Sci. USA 15, 9431–9436 (2000).

    Article  Google Scholar 

  27. Havlir, D.V. et al. Human immune response to Mycobacterium tuberculosis antigens. Infection Immunol. 59, 665–670 (1991).

    CAS  Google Scholar 

  28. Durocher, D. & Jackson, S.P. The FHA domain. FEBS Let. 513, 58–66 (2002).

    Article  CAS  Google Scholar 

  29. Marcotte, E.M. et al. Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751–753 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Pham, K., LaForge, K.S. & Kreek, M.J. Sticky-end PCR: new method for subcloning. Biotechniques 25, 206–208 (1998).

    Article  Google Scholar 

  31. Bienvenut, W.V. et al. Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics 2, 868–876 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Jones T.A., Zou J.Y., Cowan S.W. & Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  34. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Brunger A.T., et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Laskowski, R.A, MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structure. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  37. Chang, C.-I., Xu, B., Akella, R. Cobb, M.H. & Goldsmith, E.J. Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol. Cell 9, 1241–1249 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D.S. King for protein molecular weight measurements, K.F. Medzihradszky for LC/MS/MS measurements, J. Holton and E. Skordalakes for help with structure determination, C.A. Settineri for help with the deconvoluted protein mass spectrum, and L. Gay and M. Good for stimulating discussions. We are indebted to J. Kuriyan for encouragement and for pointing out the importance of the regulatory interaction sites in PknB-I. K. Strenge and S. Shieh provided technical support. We are indebted to T. Terwilliger and the TB Structural Genomics Consortium for support. The work was supported by a grant from the NIH. The Advanced Light Source Beamline 8.3.1 was funded by the NSF, the University of California and Henry Wheeler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Alber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, T., Delagoutte, B., Endrizzi, J. et al. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Mol Biol 10, 168–174 (2003). https://doi.org/10.1038/nsb897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing