Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein

Abstract

The PutA flavoprotein from Escherichia coli plays multiple roles in proline catabolism by functioning as a membrane-associated bi-functional enzyme and a transcriptional repressor of proline utilization genes. The human homolog of the PutA proline dehydrogenase (PRODH) domain is critical in p53-mediated apoptosis and schizophrenia. Here we report the crystal structure of a 669-residue truncated form of PutA that shows both PRODH and DNA-binding activities, representing the first structure of a PutA protein and a PRODH enzyme from any organism. The structure is a domain-swapped dimer with each subunit comprising three domains: a helical dimerization arm, a 120-residue domain containing a three-helix bundle similar to that in the helix-turn-helix superfamily of DNA-binding proteins and a β/α-barrel PRODH domain with a bound lactate inhibitor. Analysis of the structure provides insight into the mechanism of proline oxidation to pyrroline-5-carboxylate, and functional studies of a mutant protein suggest that the DNA-binding domain is located within the N-terminal 261 residues of E. coli PutA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactions catalyzed by the 1,320-residue E. coli PutA protein.
Figure 2: Overall structure of PutA669.
Figure 3: The active site of PutA669.
Figure 4: The DNA-binding function of PutA669.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Brown, E. & Wood, J.M. Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli. J. Biol. Chem. 267, 13086–13092 (1992).

    CAS  PubMed  Google Scholar 

  2. Menzel, R. & Roth, J. Purification of the putA gene product. J. Biol. Chem. 256, 9755–9761 (1981).

    CAS  PubMed  Google Scholar 

  3. Scarpulla, R.C. & Soffer, R.L. Membrane-bound proline dehydrogenase from Escherichia coli. J. Biol. Chem. 253, 5997–6001 (1978).

    CAS  PubMed  Google Scholar 

  4. Maloy, S. & Roth, J.R. Regulation of proline utilization in Salmonella typhimurium: characterization of put:Mu L(Ap, lac) operon fusions. J. Bacteriol. 154, 561–568 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Menzel, R. & Roth, J. Regulation of genes for proline utilization in Salmonella typhimurium: autogenous repression by the putA gene product. J. Mol. Biol. 148, 21–44 (1981).

    Article  CAS  Google Scholar 

  6. Wood, J.M. Genetics of L-proline utilization in Eschericia coli. J. Bacteriol. 146, 895–901 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Becker, D.F. & Thomas, E.A. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions. Biochemistry 40, 4714–4722 (2001).

    Article  CAS  Google Scholar 

  8. Ostrovsky de Spicer, P. & Maloy, S. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proc. Natl. Acad. Sci. USA. 90, 4295–4298 (1993).

    Article  CAS  Google Scholar 

  9. Surber, M.W. & Maloy, S. Regulation of flavin dehydrogenase compartmentalization: requirements for PutA-membrane association in Salmonella typhimurium. Biochim. Biophys. Acta 1421, 5–18 (1999).

    Article  CAS  Google Scholar 

  10. Wood, J. Membrane association of proline dehydrogenase in Escherichia coli is redox dependent. Proc. Natl. Acad. Sci. USA 84, 373–377 (1987).

    Article  CAS  Google Scholar 

  11. Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).

    Article  CAS  Google Scholar 

  12. Donald, S.P. et al. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res. 61, 1810–1815 (2001).

    CAS  PubMed  Google Scholar 

  13. Liu, H. et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc. Natl. Acad. Sci. USA 99, 3717–3722 (2002).

    Article  CAS  Google Scholar 

  14. Chakravarti, A. A compelling genetic hypothesis for a complex disease: PRODH2/DGCR6 variation leads to schizophrenia susceptibility. Proc. Natl. Acad. Sci. USA 99, 4755–4756 (2002).

    Article  CAS  Google Scholar 

  15. Vinod, M.P., Bellur, P. & Becker, D.F. Electrochemical and functional characterization of the proline dehydrogenase domain of the PutA flavoprotein from Escherichia coli. Biochemistry 41, 6525–6532 (2002).

    Article  CAS  Google Scholar 

  16. Ling, M., Allen, S.W. & Wood, J.M. Sequence analysis edentifies the proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein. J. Mol. Biol. 245, 950–956 (1994).

    Article  Google Scholar 

  17. Bennett, M.J., Schlunegger, M.P. & Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 4, 2455–2468 (1995).

    Article  CAS  Google Scholar 

  18. Guenther, B.D. et al. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat. Struct. Biol. 6, 359–365 (1999).

    Article  CAS  Google Scholar 

  19. Umhau, S. et al. The X-ray structure of D-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proc. Natl. Acad. Sci. USA 97, 12463–12468 (2000).

    Article  CAS  Google Scholar 

  20. Mattevi, A. et al. Crystal structure of D-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2. Proc. Natl. Acad. Sci. USA 93, 7496–7501 (1996).

    Article  CAS  Google Scholar 

  21. Pollegioni, L., Blodig, W. & Ghisla, S. On the mechanism of D-amino acid oxidase. Structure/linear free energy correlations and deuterium kinetic isotope effects using substituted phenylglycines. J. Biol. Chem. 272, 4924–4934 (1997).

    Article  CAS  Google Scholar 

  22. Kurtz, K.A., Rishavy, M.A., Cleland, W.W. & Fitzpatrick, P.F. Nitrogen isotope effects as probes of the mechanism of D-amino acid oxidase. J. Am. Chem. Soc. 122, 12896–12897 (2000).

    Article  CAS  Google Scholar 

  23. Surber, M.W. & Maloy, S. The PutA protein of Salmonella typhimurium catalyzes the two steps of proline degradation via a leaky channel. Arch. Biochem. Biophys. 354, 281–287 (1998).

    Article  CAS  Google Scholar 

  24. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  25. Lewis, R.J. et al. The trans-activation domain of the sporulation response regulator Spo0A revealed by X-ray crystallography. Mol. Microbiol. 38, 198–212 (2000).

    Article  CAS  Google Scholar 

  26. Baikalov, I. et al. Structure of the Escherichia coli response regulator NarL. Biochemistry 35, 11053–11061 (1996).

    Article  CAS  Google Scholar 

  27. Liu, J. et al. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol. Cell. 6, 637–648 (2000).

    Article  CAS  Google Scholar 

  28. Brennan, R.G. & Matthews, B.W. Structural basis of DNA-protein recognition. Trends. Biochem. Sci. 1989, 286–290 (1989).

    Article  Google Scholar 

  29. Nadaraia, S., Lee, Y.H., Becker, D.F. & Tanner, J.J. Crystallization and preliminary crystallographic analysis of the proline dehydrogenase domain of the multifunctional PutA flavoprotein from Escherichia coli. Acta Crystallogr. D 57, 1925–1927 (2001).

    Article  CAS  Google Scholar 

  30. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  32. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  33. Brunger, A.T. X-PLOR Version 3.1: A System for X-ray Crystallography and NMR (Yale University Press, New Haven; 1992).

    Google Scholar 

  34. Noll, F. L-(+)-Lactate. in Methods of Enzymatic Analysis, Vol. 6 (eds. Bergmeyer, J. & Grassl, M.) Chap. 3.12, 582–588 (Verlag Chemie, Weinheim; Deerfield Beach; 1983).

    Google Scholar 

  35. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  36. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  37. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  38. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  39. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  40. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the NIH (J.J.T. and D.F.B) and the NSF (D.F.B.). We thank L. Beamer for collecting the NaBr derivative data, L. Beamer and P. Tipton for helpful comments on the manuscript, and the beamline personnel at APS SBC19-ID, NSLS X8C and NSLS X12B for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Tanner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YH., Nadaraia, S., Gu, D. et al. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein. Nat Struct Mol Biol 10, 109–114 (2003). https://doi.org/10.1038/nsb885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing