Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1

Abstract

Fumarate respiration is one of the most widespread types of anaerobic respiration. The soluble fumarate reductase of Shewanella putrefaciens MR-1 is a periplasmic tetraheme flavocytochrome c. The crystal structures of the enzyme were solved to 2.9 Å for the uncomplexed form and to 2.8 Å and 2.5 Å for the fumarate and the succinate-bound protein, respectively. The structures reveal a flexible capping domain linked to the FAD-binding domain. A catalytic mechanism for fumarate reduction based on the structure of the complexed protein is proposed. The mechanism for the reverse reaction is a model for the homologous succinate dehydrogenase (complex II) of the respiratory chain. In flavocytochrome c fumarate reductase, all redox centers are in van der Waals contact with one another, thus providing an efficient conduit of electrons from the hemes via the FAD to fumarate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein fold of the soluble fumarate reductase.
Figure 2: Active site region.
Figure 3: Stereo representation of the redox centers in fumarate reductase.
Figure 4: Comparison of Shewanella soluble fumarate reductase with E.coli membrane-bound fumarate reductase and E. coli apo-LASPO.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kroger, A., Geisler, V., Lemma, E. Theis, F. & Lenger, R. Arch. Microbiol. 158, 311–314 (1992).

    Article  Google Scholar 

  2. Van Hellemond, J.J. & Tielens, A.G. Biochem. J. 304, 321–331 (1994).

    Article  CAS  Google Scholar 

  3. Arikawa, Y., Enomoto, K., Muratsubaki, H. & Okazaki, M. FEMS Microbiol. Lett. 165,111–116 (1998).

    Article  CAS  Google Scholar 

  4. Mracek, J., Snyder, S.J., Chavez, U.B. & Turrens, J.F. J. Protozool. 38, 554–558 (1991).

    Article  CAS  Google Scholar 

  5. Pealing, S.L. et al. Biochemistry 48, 12132–12140 (1992).

    Article  Google Scholar 

  6. Myers, C.R. & Myers, J.M. FEMS Microbiol. Lett. 98, 13–20 (1992).

    Article  CAS  Google Scholar 

  7. Maklashina, E., Berthold, D.A. & Cecchini, G. J. Bacteriol. 180, 5989–5996 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pealing, S.L. et al. Biochemistry 34,6153–6158 (1995).

    Article  CAS  Google Scholar 

  9. Turner, K.L. et al. Biochemistry 38, 3302–3309 (1999).

    Article  CAS  Google Scholar 

  10. Myers, C.R. & Nealson, K.H. J. Bacteriol. 172, 6232–6238 (1990).

    Article  CAS  Google Scholar 

  11. Myers, C.R. & Myers, J.M. Lett. Appl. Microbiol. 25, 162–168 (1997).

    Article  CAS  Google Scholar 

  12. Reid, G.A. et al. Biochem. Soc. Trans. 26, 418–421 (1998).

    Article  CAS  Google Scholar 

  13. Gordon, E.H., Pealing, S.L., Chapman, S.K., Ward, F.B. & Reid, G.A. Microbiology 144, 937–945 (1998).

    Article  CAS  Google Scholar 

  14. Matias, P.M. et al. Protein Sci. 5,1342–1354 (1996).

    Article  CAS  Google Scholar 

  15. Iverson, T.M., Luna-Chavez, C., Cecchini, G. & Rees, D.C. Science 284, 1961–1966 (1999).

    Article  CAS  Google Scholar 

  16. Mattevi, A. et al. Structure 15, 745–756 (1999).

    Article  Google Scholar 

  17. Karplus, P.A. & Schulz, G.E. J. Mol. Biol. 195, 701–29 (1987).

    Article  CAS  Google Scholar 

  18. Chen, Z.W. et al. Science 266, 430–432 (1994).

    Article  CAS  Google Scholar 

  19. Vik, S.B. & Hatefi, Y. Proc. Natl. Acad. Sci. USA 78, 6749–6753 (1987).

    Article  Google Scholar 

  20. Schroder, I., Gunsalus, R.P., Ackrell, B.A., Cochran, B. & Cecchini, G. J. Biol. Chem. 266, 13572–13579 (1991).

    CAS  PubMed  Google Scholar 

  21. Iverson, T.M. et al. Nature Struct. Biol. 11, 1005–1012 (1998).

    Article  Google Scholar 

  22. Xia, Z.X. & Mathews, F.S. J. Mol. Biol. 212, 837–863 (1990).

    Article  CAS  Google Scholar 

  23. Mathews, F.S., Chen, Z.W., Bellamy, H.D. & McIntire, W.S. Biochemistry 30, 238–247 (1991).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. Isomorphous replacement and anomalous scattering 80 (SERC Daresbury Laboratory, Warrington, England; 1991).

    Google Scholar 

  26. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  27. Navaza., J. Acta. Crystallogr. A. 50, 157–163 (1994).

    Article  Google Scholar 

  28. Roussel, A. & Cambillau, C. TURBO-FRODO, Biographics (AFMB, Marseille, France; 1992).

    Google Scholar 

  29. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  30. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  31. Merrit, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  32. Brunger, A.T. Nature 355, 472–475 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.L. is a research assistant at the Fund for Scientific Research-Flanders. J.J.V.B. is indebted to the same institution for a research project and to the Bijzonder Onderzoeksfonds of the University of Ghent for a Concerted Research Action. Part of this work was supported by a grant from NIH. We thank S. Chapman and G. Reid for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef J. Van Beeumen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leys, D., Tsapin, A., Nealson, K. et al. Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat Struct Mol Biol 6, 1113–1117 (1999). https://doi.org/10.1038/70051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing