Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure of human lysosomal aspartylglucosaminidase

Abstract

The high resolution crystal structure of human lysosomal aspartylglucosaminidase (AGA) has been determined. This lysosomal enzyme is synthesized as a single polypeptide precursor, which is immediately post-translationally cleaved into α- and β-subunits. Two α- and β-chains are found to pack together forming the final heterotetrameric structure. The catalytically essential residue, the N-terminal threonine of the β-chain is situated in the deep pocket of the funnel-shaped active site. On the basis of the structure of the enzyme–product complex we present a catalytic mechanism for this lysosomal enzyme with an exceptionally high pH optimum. The three-dimensional structure also allows the prediction of the structural consequences of human mutations resulting in aspartylglucosaminuria (AGU), a lysosomal storage disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mononen, I., Fisher, K.J., Kaartinen, V. & Aronson, Jr, N. Aspartylglucosaminuria: protein chemistry and molecular biology of the most common lysosomal storage disorder of glycoprotein degradation. FASEB J. 7, 1247–1256 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Ikonen, E., Julkunen, I., Tollersrud, O.-K., Kalkkinen, N. & Peltonen, L. Lysosomal aspartylglucosaminidase is processed to the active subunit in the endoplasmic reticulum. EMBO J. 12, 295–302 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fisher, K.J., Klein, M., Park, H., Vettese, M.B. & Aronson Jr, N.N. Post-translational processing and Thr206 are required for glycosylasparaginase activity. FEBS Lett. 323, 271–275 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Riikonen, A., Tikkanen, R., Jalanko, A. & Peltonen, L. Immediate interaction between the nascent subunits and two conserved amino acids Trp34 and Thr206 are needed for the catalytic activity of aspartylglucosaminidase. J. biol. Chem. 270, 4903–4907 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Ikonen, E. et al. Spectrum of mutations in aspartylglucosaminuria. Proc. natn. Acad. Sci. U.S.A. 88, 11222–11226 (1991).

    Article  CAS  Google Scholar 

  6. Tikkanen, R., Rouvinen, J., Törrönen, A., Kalkkinen, N. & Peltonen, L. Large scale purification and preliminary X-ray diffraction studies of glycosylated human aspartylglucosaminidase. Proteins in the press.

  7. Swain, A.L., Jaskólski, M., Housset, D., Rao, J.K.M. & Wlodawer, A. Crystal structure of Eschericia coli L-asparaginase, an enzyme used in cancer therapy. Proc. natn. Acad. Sci. U.S.A. 90, 1474–1478 (1993).

    Article  CAS  Google Scholar 

  8. Miller, M., Rao, J.K.M., Wlodawer, A. & Gribskov, M.R. A left-handed crossover involved in amidohydrolase catalysis. Crystal structure of Erwinia chrysanthemi L-asparaginase with bound L-aspartate. FEBS Lett. 328, 275–279 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Norris, G.E., Stillman, T.J., Anderson, B.F. & Baker, E.N. The three-dimensional structure of PNGase F, a glycosylasparaginase from Flavobacterium meningosepticum. Structure 2, 1049–1059 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Kuhn, P., Tarentino, A.L., Plummer, Jr, T.H. & Van Roey, P. Crystal structure of peptide N4-(N-acetyl-β-D-glucosaminyl)asparagine amidase F at 2.2-Å resolution. Biochemistry 33, 11699–11706 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Smith, J.L. et al. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science 264, 1427–1433 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Duggleby, H.J. et al. Penicillin acylase has a single-amino-acid catalytic centre. Nature 373, 264–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Löwe, J. et al. Crystal structure of the 205 proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    Article  PubMed  Google Scholar 

  14. Ikonen, E. et al. Aspartylglucosaminuria: cDNA encoding human aspartylglucosaminidase and the missense mutation causing the disease. EMBO J. 10, 51–58 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park, H., Fisher, K.J. & Aronson, Jr, N.N. Genomic structure of human lysosomal glycosylasparaginase. FEBS Lett. 288, 168–172 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Tenhunen, K., Laan, M., Manninen, T., Palotie, A., Peltonen, L. & Jalanko, A. Molecular cloning, chromosomal assignment and expression of the mouse aspartylglucosaminidase gene. Genomics in the press.

  17. Tarentino, A.L., Quinones, G., Hauer, C.R., Changchien, L.-M. & Plummer Jr, T.H. Molecular cloning and sequence analysis of Flavobacterium meningosepticum glycosylasparaginase: a single gene encodes the α and β subunits. Archs Biochem. Biophys. 316, 399–406 (1995).

    Article  CAS  Google Scholar 

  18. Lough, T.J. et al. The isolation and characterisation of a cDNA clone encoding L-asparaginase from developing seeds of lupin (Lupinus arboreus). Pl. molec. Biol. 19, 391–399 (1992).

    Article  CAS  Google Scholar 

  19. Kaartinen, V., Mononen, T., Laatikainen, R. & Mononen, I. Substrate specificity and reaction mechanism of human glycosasparaginase. J. biol. Chem. 267, 6855–6858 (1992).

    CAS  PubMed  Google Scholar 

  20. Vyas, N.K. Atomic features of protein-carbohydrate interactions. Curr. Opin struct. Biol. 1, 732–740.

    Article  CAS  Google Scholar 

  21. Kaartinen, V. et al. Glycoasparaginase from human leukocytes. J. biol. Chem. 266, 5860–5869 (1991).

    CAS  PubMed  Google Scholar 

  22. Tikkanen, R., Enomaa, N., Riikonen, A., Ikonen, E. & Peltonen, L. Intracellular sorting of aspartylglucosaminidase: the role of N-linked oligosaccharides and evidence of Man-6-P-independent lysosomal targeting. DNA Cell Biol. 14, 305–312 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Pfeffer, S.R. Targeting of proteins to the lysosomes. Curr. Top. Microbiol. Immun. 170, 43–65 (1991).

    CAS  Google Scholar 

  24. Musil, D. et al. The refined 2.15 Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10, 2321–2330 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jia, Z. et al. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. J. biol. Chem. 270, 5527–5533 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Metcalf, P. and Fusek, M. Two crystal structures for cathepsin D: the lysosomal targeting signal and active site. EMBO J. 12, 1293–1302 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baldwin, E.T. et al. Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design. Proc. natn. Acad. Sci. U.S.A. 90, 6796–6800 (1993).

    Article  CAS  Google Scholar 

  28. Pollitt, R.J., Jenner, F.A. & Merskey, H. Aspartylglycosaminuria: an inborn error of metabolism associated with mental defect. Lancet ii, 253–255 (1968).

    Article  Google Scholar 

  29. Ikonen, E., Enomaa, N., Ulmanen, I. & Peltonen, L. In vitro mutagenesis helps to unravel the biological consequences of aspartylglucosaminuria mutation. Genomics 11, 206–211 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. McRee, D.E. A visual protein crystallographic software system for X11/XView. J. molec. Graph. 10, 44–46 (1992).

    Article  Google Scholar 

  31. Steigemann, W. Protein, User's Guide (München 1992).

    Google Scholar 

  32. Zhang, K.Y.J. SQUASH - combining constraints for macromolecular phase refinement and extension. Acta Crystallogr. D49, 213–222 (1993).

    CAS  Google Scholar 

  33. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density and the location of errors in these models. Ada Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  34. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  35. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oinonen, C., Tikkanen, R., Rouvinen, J. et al. Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nat Struct Mol Biol 2, 1102–1108 (1995). https://doi.org/10.1038/nsb1295-1102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1295-1102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing