Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the TRAIL–DR5 complex reveals mechanisms conferring specificity in apoptotic initiation

Abstract

TRAIL, an apoptosis inducing ligand, has at least four cell surface receptors including the death receptor DR5. Here we report the crystal structure at 2.2 Å resolution of a complex between TRAIL and the extracellular region of DR5. TRAIL forms a central homotrimer around which three DR5 molecules bind. Radical differences in the surface charge of the ligand, together with variation in the alignment of the two receptor domains confer specificity between members of these ligand and receptor families. The existence of a switch mechanism allowing variation in receptor domain alignment may mean that it is possible to engineer receptors with multiple specificities by exploiting contact positions unique to individual receptor–ligand pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of TRAIL, DR5 and the TRAIL–DR5 complex.
Figure 2: Comparison of the TRAIL–DR5 and TNFβ–TNF-R1 complexes.
Figure 3: Elements of conservation and specificity in ligand–receptor binding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Nagata, S. Cell 88, 355–365 (1997).

    Article  CAS  Google Scholar 

  2. Golstein, P. Curr-Biol 7, R750–R753 (1997).

    Article  CAS  Google Scholar 

  3. Wiley, S. R., et al. Immunity 3, 673–682 (1995).

    Article  CAS  Google Scholar 

  4. Mongkolsapaya, J. et al. J-Immunol 160, 3–6 (1998).

    CAS  PubMed  Google Scholar 

  5. Walczak, H. et al. 5, 157–163 (1999).

  6. Jones, E. Y., Stuart, D. I. & Walker, N. P. Nature 338, 225–228 (1989).

    Article  CAS  Google Scholar 

  7. Banner, D. W. et al. Cell 73, 431–445 (1993).

    Article  CAS  Google Scholar 

  8. Karpusas, M. et al. Structure 3, 1031–1039 (1995).

    Article  CAS  Google Scholar 

  9. Cha, S. S. et al. 11, 253–261 (1999).

  10. Naismith, J. H., Devine, T. Q., Kohno, T. & Sprang, S. R. Structure 4, 1251–1262. (1996).

    Article  CAS  Google Scholar 

  11. Yamagishi, J. et al. Protein Eng. 3, 713–719 (1990).

    Article  CAS  Google Scholar 

  12. Goh, C. R., Loh, C. S. & Porter, A. G. Protein Eng. 4, 785–791 (1991).

    Article  CAS  Google Scholar 

  13. Schneider, P. et al. J. Biol. Chem. 272, 18827–12833 (1997).

    Article  CAS  Google Scholar 

  14. Brojatsch, J., Naughton, J., Rolls, M. M., Zingler, K. & Young, J. A. Cell 87, 845–855 (1996).

    Article  CAS  Google Scholar 

  15. Screaton, G. R., Mongkolsapaya, J., Xu, X. N., Cowper, A. E., McMichael, A. J. & Bell, J. I. Curr. Biol. 7, 693–696 (1997).

    Article  CAS  Google Scholar 

  16. Park, Y. C., Burkitt, V., Villa, A. R., Tong, L. & Wu, H Nature 398, 533–538 (1999).

    Article  CAS  Google Scholar 

  17. Gao, G. F. et al. Protein Sci. 7, 1245–1249 (1998).

    Article  CAS  Google Scholar 

  18. Cordingley, M. G., Callahan, P. L., Sardana, V. V., Garsky, V. M. & Colonno, R. J. J. Biol. Chem. 265, 9062–9065 (1990).

    CAS  PubMed  Google Scholar 

  19. Otwinowski, Z. O. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  20. Navaza, J. Acta. Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  21. Brünger, A. T. XPLOR Version 3.1: A system for X-ray Crystallography and NMR. (Yale University Press New Haven, Connecticut; 1992).

  22. Brunger, A. T. et al. Acta. Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  23. Collaborative Computational Project, No. 4 Acta Crystallogr D 50: 760–763 (1994).

  24. De La Fortelle, E. & Bricogne, G. Meth. Enzymol. 276, 442–494 (1997).

    Google Scholar 

  25. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Acta. Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Stuart, D. I., Levine, M., Muirhead, H. & Stammers, D.K. J. Mol. Biol 134, 109–142 (1979).

    Article  CAS  Google Scholar 

  27. Hubbard, S. J. & Thornton, J. M. Naccess, computer program. (University College, London; 1993).

  28. Esnouf, R. M. Acta. Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  29. Merritt, E. A. & Bacon, D. J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  30. Van Ostade, X., Tavernier, J. & Fiers, W. Protein Eng. 7, 5–22 (1994).

    Article  CAS  Google Scholar 

  31. Nicholls, A., Sharp, K. A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Esnouf, P. Gouet and R. Bryan for computing facilities and programs, K. Harlos for help with heavy atom soaks, G. Gao for advice on refolding protocols and crystallisation trials, K. Hudson and J. Heath for the rhinovirus 3c protease methodology, M. Gross for circular dichroism analysis, A. van der Merwe and A. McMichael for discussion. We also thank the staff at the European Molecular Biology Laboratory outstation, ID2 (ESRF, Grenoble) and at 9.6 (SRS, Daresbury). JM is funded by Siriraj Hospital Mahidol University Thailand, EYJ is funded by the Royal Society and the Cancer Research Campaign, GRS and DIS are funded by the MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.Yvonne Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mongkolsapaya, J., Grimes, J., Chen, N. et al. Structure of the TRAIL–DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Mol Biol 6, 1048–1053 (1999). https://doi.org/10.1038/14935

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14935

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing