Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding

Abstract

Muscle acylphosphatase (AcP) is a small protein that folds very slowly with two-state behavior. The conformational stability and the rates of folding and unfolding have been determined for a number of mutants of AcP in order to characterize the structure of the folding transition state. The results show that the transition state is an expanded version of the native protein, where most of the native interactions are partially established. The transition state of AcP turns out to be remarkably similar in structure to that of the activation domain of procarboxypeptidase A2 (ADA2h), a protein having the same overall topology but sharing only 13% sequence identity with AcP. This suggests that transition states are conserved between proteins with the same native fold. Comparison of the rates of folding of AcP and four other proteins with the same topology, including ADA2h, supports the concept that the average distance in sequence between interacting residues (that is, the contact order) is an important determinant of the rate of protein folding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the transition state of AcP.
Figure 2: Comparison between the folding transition states of AcP and ADA2h.
Figure 3: Correlation of contact order and folding rate for proteins displaying the same topology as AcP.

Similar content being viewed by others

References

  1. Pastore, A., Saudek, V., Ramponi, G. & Williams, R.J.P. J. Mol. Biol. 224, 427–440 ( 1992).

    Article  CAS  Google Scholar 

  2. Thunnissen, M.M.G.M., Taddei, N., Liguri, G., Ramponi, G. & Nordlund, P. Structure 5, 69– 79 (1997).

    Article  CAS  Google Scholar 

  3. Taddei, N. et al. Eur. J. Biochem. 225, 811– 817 (1994).

    Article  CAS  Google Scholar 

  4. van Nuland, N.A.J. et al. J. Mol. Biol. 283, 883– 891 (1998).

    Article  CAS  Google Scholar 

  5. Chiti, F. et al. J. Mol. Biol. 283, 893– 903 (1998).

    Article  CAS  Google Scholar 

  6. Chiti, F., et al. J. Biol. Chem. 274, 20151– 20158 (1999).

    Article  CAS  Google Scholar 

  7. Matouschek, A., Kellis Jr, J.T., Serrano, L. & Fersht, A.R. Nature 340, 122–126 ( 1989).

    Article  CAS  Google Scholar 

  8. Goldenberg, D.P., Frieden, R.W., Haack, J.A. & Morrison, T.B. Nature 338, 127–132 ( 1989).

    Article  CAS  Google Scholar 

  9. Serrano, L., Matouschek, A. & Fersht, A.R. J. Mol. Biol. 224, 805– 818 (1992).

    Article  CAS  Google Scholar 

  10. Itzhaki, L.S., Otzen, D.E. & Fersht, A.R. J. Mol. Biol. 254, 260– 288 (1995).

    Article  CAS  Google Scholar 

  11. Milla, M.E., Brown, B.M., Waldburger, C.D. & Sauer, R.T. P22 Biochemistry 34, 13914– 13919 (1995).

    Article  CAS  Google Scholar 

  12. Sosnick, T.R., Jackson, S., Wilk, R.R., Englander, S.W. & DeGrado, W.F. Proteins 24, 427– 432 (1996).

    Article  CAS  Google Scholar 

  13. Viguera, A.R., Wilmanns, M. & Serrano, L Nature Struct. Biol. 3, 874– 880 (1996).

    Article  CAS  Google Scholar 

  14. Burton, R.E., Huang, G.S., Daugherty, M.A., Calderone, T.L. & Oas, T.G. Nature Struct. Biol. 4, 305–310 (1997).

    Article  CAS  Google Scholar 

  15. Lopez-Hernandez, E. & Serrano, L. Folding & Design 1, 43–55 ( 1996).

    Article  CAS  Google Scholar 

  16. Grantcharova, V.P., Riddle, D.S., Santiago, J.V. & Baker, D. Nature Struct. Biol. 5, 714–720 (1998).

    Article  CAS  Google Scholar 

  17. Villegas, V., Martinez, J.C., Aviles, F.X. & Serrano, L. J. Mol. Biol. 283, 1027–1036 (1998).

    Article  CAS  Google Scholar 

  18. Jackson, S.E. Folding & Design 3, R81–R91 (1998).

    Article  CAS  Google Scholar 

  19. Fersht, A.R., Itzhaki, L.S., ElMasry, N.F., Matthews, J.M., Otzen D.E. Proc. Natl. Acad. Sci. USA 91, 10426–10429 (1994).

    Article  CAS  Google Scholar 

  20. Martinez, J.C., Pisabarro, M.T. & Serrano, L. Nature Struct. Biol. 5, 721– 729 (1998).

    Article  CAS  Google Scholar 

  21. Abkevich, V.I., Gutin, A.M. & Shakhnovich, E.I. Biochemistry 33, 10026– 10036 (1994).

    Article  CAS  Google Scholar 

  22. Plaxco, K.W., Simons, K.T. & Baker, D. J. Mol. Biol. 277, 985– 994 (1998).

    Article  CAS  Google Scholar 

  23. Villegas, V. et al. Biochemistry 34, 15105– 15110 (1995).

    Article  CAS  Google Scholar 

  24. van Nuland, N.A.J. et al. Biochemistry 37, 622– 637 (1998).

    Article  CAS  Google Scholar 

  25. Silow, M. & Oliveberg, M. Biochemistry 36, 7633–7636 (1997).

    Article  CAS  Google Scholar 

  26. Aronsson, G., Brorsson, A.-C., Sahlman, L. & Jonsson, B.-H. FEBS Lett. 411, 359–364 (1997).

    Article  CAS  Google Scholar 

  27. Taddei, N. et al. Biochemistry 35, 7077– 7083 (1996).

    Article  CAS  Google Scholar 

  28. Santoro, M.M. & Bolen, D.W. Biochemistry 27, 8063–8068 (1988).

    Article  CAS  Google Scholar 

  29. Jackson, S.E. & Fersht, A.R. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Capanni, A. Giacobini, E. Giannoni and E. Chung for their technical support. We are also indebted to K. Plaxco for his help in the determination of the relative contact order values, to L. Serrano and E. Shakhnovich for very useful discussions and to G. Ramponi for his support. F.C. is supported in part by a short-term grant from the Società Italiana di Biochimica. This is a contribution from the Oxford Centre for Molecular Sciences, which is funded by the Biotechnology and Biological Sciences Research Council, the Engineering and Physical Sciences Research Council and the Medical Research Council. The work has also been supported by funds from the Consiglio Nazionale delle Ricerche, from the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (Project Biotechnology) and from the European Community. The research of C.M.D. is supported in part by an International Research Scholars award from the Howard Hughes Medical Institute and by a programme grant from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Dobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiti, F., Taddei, N., White, P. et al. Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nat Struct Mol Biol 6, 1005–1009 (1999). https://doi.org/10.1038/14890

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing