Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal Structure of the protein drug urate oxidase-inhibitor complex at 2.05 Å resolution

Abstract

The gene coding for urate oxidase, an enzyme that catalyzes the oxidation of uric acid to allantoin, is inactivated in humans. Consequently, urate oxidase is used as a protein drug to overcome severe disorders induced by uric acid accumulation. The structure of the active homotetrameric enzyme reveals the existence of a small architectural domain that we call T-fold (for tunnelling-fold) domain. It assembles to form a perfect unusual dimeric α8β16 barrel. Urate oxidase may be the archetype of an expanding new family of tunnel-shaped proteins that now has three members; tetrahydropterin synthase, GTP cyclohydrolase I and urate oxidase. The structure of the active site of urate oxidase around the 8-azaxanthine inhibitor reveals an original mechanism of oxidation that does not require any ions or prosthetic groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ames, B.N., Cathcart, R., Schwiers, E. & Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl. Acad. Sci. USA 78, 6858–6862 (1981).

    Article  CAS  Google Scholar 

  2. Varela-Echavarria, A. Montes de Oca-Luna, R. & Barrera-Saldana, H.A. Uricase protein sequences: conserved during vertebrate evolution but absent in humans. FASEB J. 2, 3092–3096 (1988).

    Article  CAS  Google Scholar 

  3. Wu, X., Lee, C.C., Muzny, D.M. & Caskey, C.T. Urate oxidase: primary structure and evolutionary implications. Proc. Natl. Acad. Sci. USA 86, 9412–9416 (1989).

    Article  CAS  Google Scholar 

  4. Wu, X., Muzny, D.M., Lee, C.C. & Caskey, C.T. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J. Mol. Evol. 34, 78–84 (1992).

    Article  CAS  Google Scholar 

  5. Legoux, R. et al. Cloning and expression in Escherichia coli of the gene encoding Aspergillus flavus urate oxidase. J. Biol. Chem. 267, 8565–8570 (1992).

    CAS  PubMed  Google Scholar 

  6. Leplatois, P., Le Douarin, B. & Loison, G. High-level production of a peroxisomal enzyme: Aspergillus flavus uricase accumulates intracellularly and is active in Saccharomyces cerevisiae. Gene 122, 139–145 (1992).

    Article  CAS  Google Scholar 

  7. Alvares, K. et al. Rat urate oxidase produced by recombinant baculovirus expression: formation of peroxisome crystalloid core-like structures. Proc. Natl. Acad. Sci. USA 89, 4908–4912 (1992).

    Article  CAS  Google Scholar 

  8. Gould, S.J., Keller, G.A. & Subramani, S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J. Cell Biol. 107, 897–905 (1988).

    Article  CAS  Google Scholar 

  9. Orengo, C.A., Jones, D.T. & Thornton, J.M. Protein super-families and domain superfolds. Nature 372, 631–634 (1994).

    Article  CAS  Google Scholar 

  10. Nar, H. et al. Atomic structure of GTP cyclohydrolase I. Structure 3, 459–466 (1995).

    Article  CAS  Google Scholar 

  11. Nar, H., Huber, R., Heizmann, C.W., Thöny, B. & Bürgisser, D. Three-dimensional structure of 6-pyruvol tetrahydropterin synthase, an enzyme involved in tetrahydrobiopterin biosynthesis. EMBO J. 13, 1255–1262 (1994).

    Article  CAS  Google Scholar 

  12. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  13. Bürgisser, D.M. et al. 6-pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding. J. Mol. Biol. 253, 358–369 (1995).

    Article  Google Scholar 

  14. Nar, H. et al. Active site topology and reaction mechanism of GTP cyclohydrolase I. Proc. Natl. Acad. Sci. USA 92, 12120–12125 (1995).

    Article  CAS  Google Scholar 

  15. Bourne, H.R., Sanders, D.A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991).

    Article  CAS  Google Scholar 

  16. Bongaerts, G.P.A. & Vogels, G.D. Mechanism of uricase action. Biochim. Biophys. Acta 567, 295–308 (1979).

    Article  CAS  Google Scholar 

  17. Bentley, R. & Neuberger, A. The mechanism of action of uricase. Biochem. J. 52, 694–699 (1952).

    Article  CAS  Google Scholar 

  18. Pitts, O.M. & Priest, D.G. Uricase reaction intermediate. Mechanism of borate and hydroxide ion catalyst. Biochemistry 12, 1358–1363 (1973).

    Article  CAS  Google Scholar 

  19. Sokolic, L., Modric, N. & Poje, M. Regiochemical course of chemical and enzymic uricolysis to allantoin. A non-degradative 13C-NMR evidence. Tetrahedron Lett. 32, 7477–7480 (1991).

    Article  CAS  Google Scholar 

  20. Modric, N., Derome, A.E., Ashcroft, S.J.H. & Poje, M. Tracing and identification of uricase reaction intermediates. A direct 13C-NMR/isotope-labelling evidence. Tetrahedron Lett. 33, 6691–6694 (1992).

    Article  CAS  Google Scholar 

  21. Kahn, K. & Tipton, P.A. Kinetic mechanism and cofactor content of soybean root nodule urate oxidase. Biochemistry 36, 4731–4738 (1997).

    Article  CAS  Google Scholar 

  22. Kahn, K., Serfozo, P. & Tipton, P.A. Identification of the true product of the urate oxidase reaction. J. Am. Chem. Soc. 119, 5435–5442 (1997).

    Article  CAS  Google Scholar 

  23. Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  24. Leslie, A.G.W. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography (SERC Daresbury Laboratory, Warrington; 1992).

  25. Schiltz, M., Prangé, T. & Fourme, R. On the preparation and X-ray data collection of isomorphous xenon derivatives. J. Appl. Crystallogr. 27, 950–960 (1994).

    Article  CAS  Google Scholar 

  26. Prangé, T. et al. Exploring hydrophobic sites in proteins with xenon or krypton. Proteins, Struct, Funct, and Genetics, in the press.

  27. CCP4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  28. Cowtan, K.D. & Main, P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D49, 148–157 (1993).

    CAS  Google Scholar 

  29. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  30. Read, R.J. Structure-factor probabilities for related structures. Acta Crystallogr. A46, 900–912 (1990).

    Article  CAS  Google Scholar 

  31. Brünger, A.T., Krukowski, A. & Erickson, J.W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr. A46, 585–593 (1990).

    Article  Google Scholar 

  32. Labesse, G., Colloc'h, N., Pothier, J. & Mornon, J.P. P-SEA: a new efficient assignment of secondary structure from Cα trace of proteins.CABIOS 13, 291–295 (1997).

    CAS  PubMed  Google Scholar 

  33. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures.J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colloc'h, N., Hajji, M., Bachet, B. et al. Crystal Structure of the protein drug urate oxidase-inhibitor complex at 2.05 Å resolution. Nat Struct Mol Biol 4, 947–952 (1997). https://doi.org/10.1038/nsb1197-947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1197-947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing