Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermediates and kinetic traps in the folding of a large ribozyme revealed by circular dichroism and UV absorbance spectroscopies and catalytic activity

Abstract

The folding thermodynamics and kinetics for the ribozyme from Bacillus subtilis RNase P are analyzed using circular dichroism and UV absorbance spectroscopies and catalytic activity. At 37 °C, the addition of Mg2+ (Kd 50 μM) to the unfolded state produces an intermediate state within 1 ms which contains a comparable amount of secondary structure as the native ribozyme. The subsequent transition to the native state (Kd[Mg] 0.8 mM, Hill coefficient 3.5) has a half-life of hundreds of seconds as measured by circular dichroism at 278 nm and by a ribozyme activity assay. Surprisingly, the formation of the native structure is accelerated strongly by the addition of a denaturant; 30-fold at 4.5 M urea. Thus, the rate-limiting step entails the disruption of a considerable number of interactions. The folding of this, and presumably other large RNAs, is slow due to the structural rearrangement of kinetically trapped species. Taken together with previous submillisecond relaxation kinetics of tRNA tertiary structure, we suggest that error-free RNA folding can be on the order of milliseconds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crothers, D.M., Cole, P.E., Hilbers, C.W. & Shulman, R.G. The molecular mechanism of thermal unfolding E. coli tRNAfmet . J. Mol. Biol. 87, 63–88 (1974).

    CAS  PubMed  Google Scholar 

  2. Celander, D.W. & Cech, T.R. Visualizing the higher order folding of a catalytic RNA molecule. Science 251, 401–407 (1991).

    CAS  PubMed  Google Scholar 

  3. Banerjee, A.R., Jaeger, J.A. & Turner, D.H. Thermal unfolding of a group I ribozyme: the low-temperature transition is primarily disruption of tertiary structure. Biochemistry 32, 153–163 (1993).

    CAS  PubMed  Google Scholar 

  4. Laing, L.G. & Draper, D.E. Thermodynamics of RNA folding in a conserved ribosomal RNA domain. J. Mol. Biol. 237, 560–576 (1994).

    CAS  PubMed  Google Scholar 

  5. Murphy, F.L. & Cech, T.R. An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme . Biochemistry 32, 5291–5300 (1993).

    CAS  PubMed  Google Scholar 

  6. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    CAS  PubMed  Google Scholar 

  7. Pan, T. Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P, Biochemistry 34, 902–909 (1995).

    CAS  PubMed  Google Scholar 

  8. Loria, A. & Pan, T. Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2, 551–563 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Doherty, E.A. & Doudna, J.A. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core. Biochemistry 36, 3159–3169 (1997).

    CAS  PubMed  Google Scholar 

  10. Draper, D.E. Parallel worlds. Nature Struct Biol. 3, 397–400 (1996).

    CAS  PubMed  Google Scholar 

  11. Thirumalai, D. & Woodson, S.A. Kinetics of folding of proteins and RNA. Acc. Chem. Res. 29, 433–439 (1996).

    CAS  Google Scholar 

  12. Cole, P.E. & Crothers, D.M. Conformational changes of transfer ribonucleic acid. Relaxation kinetics of the early melting transition of tRNAMet(E. coli) . Biochemistry 11, 4368–4374 (1972).

    CAS  PubMed  Google Scholar 

  13. Urbanke, C., Romer, R. & Maass, G. Tertiary structure of tRNAPhe (Yeast): kinetics and electrostatic repulsion. Eur. J. Biochem. 55, 439–444 (1975).

    CAS  PubMed  Google Scholar 

  14. Cole, P.E., Yang, S.K. & Crothers, D.M. Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams. Biochemistry 11, 4358–4368 (1972).

    CAS  PubMed  Google Scholar 

  15. Lynch, D.C. & Schimmel, P.R. Cooperative binding of magnesium to transfer RNA studied by a fluorescent probe. Biochemistry 13, 1841–1852 (1974).

    CAS  PubMed  Google Scholar 

  16. Zarrinkar, P.P. & Williamson, J.R. Kinetic intermediates in RNA folding. Science 265, 918–924 (1994).

    CAS  PubMed  Google Scholar 

  17. Banerjeee, A.R. & Turner, D.H. The time dependence of chemical modification reveals slow steps in the folding of a group I ribozyme. Biochemistry 34, 6504–6512 (1995).

    Google Scholar 

  18. Zarrinkar, P.P. & Williamson, J.R. The kinetic folding pathway of the Tetrahymena ribozyme reveals possible similarities between RNA and protein folding. Nature Struct. Biol. 3, 432–438 (1996).

    CAS  PubMed  Google Scholar 

  19. Zarrinkar, P.P., Wang, J. & Williamson, J.R. Slow folding kinetics of RNase P RNA. RNA 2, 564–573 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Downs, W.D. & Cech, T.R. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks. RNA 2, 718–732 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Emerick, V.L., Pan, J. & Woodson, S.A. Analysis of rate-determining Conformational changes during self-splicing of the Tetrahymena intron. Biochemistry 35, 13469–13477 (1996).

    CAS  PubMed  Google Scholar 

  22. Sclavi, B., Woodson, S., Sullivan, M., Chance, M.R. & Brenowitz, M. Time- resolved synchrotron X-ray “footprinting”, a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding. J. Mol. Biol. 266, 144–159 (1997).

    CAS  PubMed  Google Scholar 

  23. Cantor, C.R. & Schimmel, P.R. In Biophysical chemistry, Part II: techniques for the study of biological structure and function 381–405 (W.H. Freeman & Company, S.F.; 1980).

    Google Scholar 

  24. Gray, D.M., Hung, S.-H. & Johnson, K.H. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Meths. Enz. 246, 19–34 (1995).

    CAS  Google Scholar 

  25. Manning, G.S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978).

    CAS  PubMed  Google Scholar 

  26. Matthews, C.R. Effect of point mutations on the folding of globular proteins. Meths. Enz. 154, 498–511 (1987).

    CAS  Google Scholar 

  27. Pace, C.N. The stability of globular proteins. CRC Crit. Rev. biochem. 3:1–4–, (1975).

    CAS  PubMed  Google Scholar 

  28. Quigley, G.J. & Rich, A. Structural domains of tranfer RNA molecules. Science 194, 796–806 (1976).

    CAS  PubMed  Google Scholar 

  29. Pan, J., Thirumalai, D. & Woodson, S.A. Folding of RNA involves parallel pathways. J. Mol. Biol. in the press (1997).

  30. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30, 10428–10435 (1991).

    CAS  PubMed  Google Scholar 

  31. Sosnick, T.R., Mayne, L. & Englander, S.W. Molecular collapse: The rate- limiting step in 2-state cytochrome c folding. Proteins: Struct. Funct Genet. 24, 413–426 (1996).

    CAS  Google Scholar 

  32. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. The barriers in protein folding. Nature Struct. Biol. 1, 149–156 (1994).

    CAS  PubMed  Google Scholar 

  33. Baldwin, R.L. The nature of protein folding pathways: The classical versus the new view. J. Biomol. NMR 5, 103–109 (1995).

    CAS  PubMed  Google Scholar 

  34. Abkevich, V.I., Gutin, A.M. & Shakhnovich, E.I. Specific nucleus as the transition state for protein folding: Evidence from the lattice model. Biochemistry 33, 10026–10036 (1994).

    CAS  PubMed  Google Scholar 

  35. Itzhaki, L.S., Otzen, D.E. & Fersht, A.R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J. Mol. Biol. 254, 260–88 (1995).

    CAS  PubMed  Google Scholar 

  36. Guo, Z.Y. & Thirumalai, D. Kinetics of protein folding: Nucleation mechanism, time scales, and pathways. Biopolymers 36, 83–102 (1995).

    CAS  Google Scholar 

  37. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: Native-state hydrogen exchange. Science 269, 192–197 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamada, D., Segawa, S., Goto, Y. Non-native α-helical intermediate in the refolding of β-lactoglobin, a predominantly β-sheet protein. Nature Struct. Biol. 3, 868–873 (1996).

    CAS  PubMed  Google Scholar 

  39. Bryngelson, J.D. & Wolynes, P.G. Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Phys. Chem. 93, 6902–6915 (1989).

    CAS  Google Scholar 

  40. Abkevich, V.I., Gutin, A.M. & Shakhnovich, E.I. Free energy landscape for protein folding kinetics: Intermediates, traps, and multiple pathways in theory and lattice moldel simulations. J. Chem. Phys. 101:6052–6062 (1994).

    CAS  Google Scholar 

  41. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. funnels, pathways and the energy landscape of protein folding: A synthesis. Proteins: Struc. Funct. Genet. 21, 167–195 (1995).

    CAS  Google Scholar 

  42. Dill, K.A. & Chan, H.S. From Levinthal to pathways to funnels. Nature Struct. Biol. 4: 10–19 (1997).

    CAS  PubMed  Google Scholar 

  43. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan, T. & Zhong, K. Selection of circularly permuted ribozymes from Bacillus subtilis RNase P by substrate binding. Biochemistry 33, 14207–14212 (1994).

    CAS  PubMed  Google Scholar 

  45. Beebe, J.A. & Fierke, C.A. A kinetic mechanism for cleavage of precursor tRNAAsp catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry 33, 10294–10304 (1994).

    CAS  PubMed  Google Scholar 

  46. Loria, A. & Pan, T. Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 36, 6317–6235 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, T., Sosnick, T. Intermediates and kinetic traps in the folding of a large ribozyme revealed by circular dichroism and UV absorbance spectroscopies and catalytic activity. Nat Struct Mol Biol 4, 931–938 (1997). https://doi.org/10.1038/nsb1197-931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1197-931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing