Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic activation of protein function: A view emerging from NMR spectroscopy

Abstract

Recent developments in solution NMR methods have allowed for an unprecedented view of protein dynamics. Current insights into the nature of protein dynamics and their potential influence on protein structure, stability and function are reviewed. Particular emphasis is placed on the potential of fast side chain motion to report on the residual conformational entropy of proteins and how this entropy can enter into both the thermodynamic and kinetic aspects of protein function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of various motions affecting the obtained generalized order parameters for methyl deuterons.
Figure 2: Distributions of the amplitude of fast dynamics of methyl-bearing side chains in proteins.
Figure 3: Fast dynamics of methyl-bearing side chains in a calmodulin-peptide complex.
Figure 4: Dynamics, entropy and allostery.

Similar content being viewed by others

References

  1. Weber, G. Energetics of ligand binding to proteins. Adv. Prot. Chem. 29, 1–83 (1975).

    CAS  Google Scholar 

  2. Gurd, F.R.N. & Rothgeb, T.M. Motions in proteins. Adv. Prot. Chem. 33, 73–165 (1979).

    CAS  Google Scholar 

  3. Englander, S.W. & Kallenbach, N.R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521–655 (1983).

    Article  CAS  Google Scholar 

  4. Frauenfelder H., Parak F., & Young RD. Conformational substates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451–79 (1988).

    Article  CAS  Google Scholar 

  5. Frauenfelder, H., Sligar, S.G. & Wolynes, P.G. The energy landscapes and motions in proteins. Science 254, 1598–1603 (1991).

    Article  CAS  Google Scholar 

  6. Onuchic, J.N., Luthey-Schulten, Z. & Wolynes, P.G. Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997).

    Article  CAS  Google Scholar 

  7. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. NMR Spectr. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  8. McIntosh, L.P. & Dahlquist, F.W. Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q. Rev. Biophys. 23, 1–38 (1990).

    Article  CAS  Google Scholar 

  9. LeMaster, D.M. Isotope labeling in solution protein assignment and structural analysis. Progr. NMR Spectroscopy 26, 371–419 (1994).

    Article  CAS  Google Scholar 

  10. Henry, G.D., Weiner, J.H. & Sykes, B.D. Backbone dynamics of a model membrane protein: 13C NMR spectroscopy of alanine methyl groups in detergent-solubilized M13 coat protein. Biochemistry 25, 590–598 (1985).

    Article  Google Scholar 

  11. Nicholson, L.K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry 31, 5253–5263 (1992).

    Article  CAS  Google Scholar 

  12. Muhandiram, D.R., Yamazaki, T., Sykes, B.D. & Kay, L.E. Measurement of 2H T1 and T1r relaxation times in uniformly 13C-labeled and fractionally 2H-labeled proteins in solution. J. Am. Chem. Soc. 117, 11536–11544 (1995).

    Article  CAS  Google Scholar 

  13. LeMaster, D.M. & Kushlan, D.M. Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J. Am. Chem. Soc. 118, 9255–9264 (1996).

    Article  Google Scholar 

  14. Wand, A.J., Bieber, R.J., Urbauer, J.L., McEvoy, R.P. & Gan, Z. Carbon relaxation in fractionally randomly 13C-enriched proteins. J. Magn. Reson. B 108, 173–175 (1995).

    Article  CAS  Google Scholar 

  15. Rosen, M.K. et al. Selective methyl group protonation of perdeuterated proteins. J. Mol. Biol. 263, 627–636 (1996).

    Article  CAS  Google Scholar 

  16. Lee, A.L., Urbauer, J.L. & Wand, A.J. Improved labeling strategy for 13C relaxation measurements of methyl groups in proteins. J. Biomol. NMR 9, 437–440 (1997).

    Article  CAS  Google Scholar 

  17. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  18. Farrow, N.A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  19. Loria, J.P., Rance, M. & Palmer, A.G., III. A relaxation compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J. Am. Chem. Soc. 121, 2331–2332 (1999).

    Article  CAS  Google Scholar 

  20. Skrynnikov, N.R., Mulder, F.A.A., Hon, B., Dahlquist, F.W. & Kay, L.E. Probing slow timescale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 123, 4556–4666 (2001).

    Article  CAS  Google Scholar 

  21. Korzhnev, D.M., Billeter, M., Arseniev, A.S. & Orekhov, V.Y. NMR studies of Brownian tumbling and internal motions in proteins. Prog. NMR Spectr. 38, 197–266 (2001).

    Article  CAS  Google Scholar 

  22. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  23. Palmer, A.G. III. Probing molecular motion by NMR. Curr. Opin. Struct. Biol. 7, 732–737 (1997).

    Article  CAS  Google Scholar 

  24. Stone, M.F. NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc. Chem. Res. 34, 379–388 (2001).

    Article  CAS  Google Scholar 

  25. Akke, M., Brüshweiler, R. and Palmer, A.G., III. NMR order parameters and free energy: an analytical approach and its application to cooperative Ca2+ binding by calbindin D9k . J. Am. Chem. Soc. 116, 8426–8427 (1993).

    Google Scholar 

  26. Wand, A.J., Urbauer, J.L., McEvoy, R.P. & Bieber, R.J. Internal dynamics of human ubiquitin revealed by 13C-relaxation of randomly, fractionally enriched protein. Biochemistry 35, 6116–6125 (1996).

    Article  CAS  Google Scholar 

  27. Lee, A.L., Flynn, P.F. & Wand, A.J. A comparison of 2H and 13C NMR relaxation techniques for the study of protein methyl group dynamics in solution. J. Am. Chem. Soc. 121, 2891–28902 (1999).

    Article  CAS  Google Scholar 

  28. Lee, A.L. & Wand, A.J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504 (2001).

    Article  CAS  Google Scholar 

  29. Flynn, P.F., Bieber Urbauer, R.J., Zhang, H., Lee, A.L. & Wand, A.J. Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2 . Biochemistry 40, 6559–6569 (2001).

    Article  CAS  Google Scholar 

  30. Liu, W. et al. Main chain and side chain dynamics of oxidized flavodoxin from C. Anabaena Biochemistry, In the press (2001).

    Google Scholar 

  31. Walsh, S.T.R., Lee, A.L., De Grado, W.F. & Wand, A.J. Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H NMR relaxation methods. Biochemistry 40, 9650–9569 (2001).

    Article  Google Scholar 

  32. Mittermaier, A., Kay, L.E. & Forman-Kay, J.D. Analysis of deuterium relaxation-derived methyl axis order parameters and correlation with local structure. J. Biomol. NMR 13, 181–185 (1999).

    Article  CAS  Google Scholar 

  33. Ishima, R., Louis, J.M. & Torchia, D.A. Characterization of two hydrophobic methyl clusters in HIV-1 protease by NMR spin relaxation in. J. Mol. Biol. 305, 515–521 (2001).

    Article  CAS  Google Scholar 

  34. Wand, A.J. On the dynamic origins of allosteric activation. Science 293, 1395 (2001).

    Article  CAS  Google Scholar 

  35. Li, Z., Raychaudhuri, S. & Wand, A.J. Insights into the local residual entropy of proteins provided by NMR relaxation. Protein Sci. 5, 2647–2650 (1996).

    Article  CAS  Google Scholar 

  36. Yang, D. & Kay, L.E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263, 369–382 (1996).

    Article  CAS  Google Scholar 

  37. Prompers, J.J. & Brüshweiler, R. Thermodynamic interpretation of NMR relaxation parameters in proteins in the presence of motional correlations. J. Phys. Chem. B 104, 11416–11424 (2000).

    Article  CAS  Google Scholar 

  38. Mandel, A.M., Akke, M. & Palmer, A.G., III. Dynamics of ribonuclease H: temperature dependence of motions on multiple timescales. Biochemistry 35, 16009–16023 (1996).

    Article  CAS  Google Scholar 

  39. Yang, D., Mittermaier, A., Mok, Y-K. & Kay, L.E. A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. J. Mol. Biol. 276, 939–954 (1998).

    Article  CAS  Google Scholar 

  40. Wagner, G. Activation volumes for the rotational motion of interior aromatic rings in globular proteins determined by high resolution 1H NMR at variable pressure. FEBS Lett. 112, 280–284 (1980).

    Article  CAS  Google Scholar 

  41. Pappu, R.V., Srinivasan, R. & Rose, G.D. The Flory isolated-pair hypothesis is not valid for polypeptide chains: implications for protein folding. Proc. Natl. Acad. Sci. USA 97, 12565–12570 (2000).

    Article  Google Scholar 

  42. Lee, A.L., Kinnear, S.A. & Wand, A.J. Redistribution and loss of side-chain entropy upon formation of a calmodulin–peptide complex. Nature Struct. Biol. 7, 72–77 (2000).

    Article  CAS  Google Scholar 

  43. Loh, A.P., Pawley, N., Nicholson, L.K. & Oswald, R.E. An increase in side chain entropy facilitates effector binding: NMR characterization of the side chain methyl group dynamics in Cdc42Hs. Biochemistry 40, 4590–4600 (2001).

    Article  CAS  Google Scholar 

  44. Cooper, A. & Dryden, D.T.F. Allostery without conformational change. A plausible model. Eur. Biophys. J. 11, 103–109 (1984).

    Article  CAS  Google Scholar 

  45. Freire, E. Statistical thermodynamic linkage between conformational and binding equilibria. Adv. Prot. Chem. 51, 255–279 (1998).

    CAS  Google Scholar 

  46. Pan, H., Lee, J. C. & Hilser, V.J. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl. Acad. Sci. USA 97, 12020–12025 (2000).

    Article  CAS  Google Scholar 

  47. Pauling, L. Nature of forces between large molecules of biological interest. Nature 161, 707–709 (1948).

    Article  CAS  Google Scholar 

  48. Jencks, W.P. (1975) Binding energy, specificity, and enzymic catalysis: the circe effect. Adv. Enzymol. 43, 219–410.

    CAS  PubMed  Google Scholar 

  49. Welch, G.R., Somogyi, B. & Damjanovich, S. The role of protein fluctuations in enzyme action: A review. Prog. Biophys. Molec. Biol. 39, 109–146 (1982).

    Article  CAS  Google Scholar 

  50. Bruice, T.C., & Benkovic, S.J. Chemical basis for enzyme catalysis. Biochemistry 39, 6267–6274 (2000).

    Article  CAS  Google Scholar 

  51. Kohen, A., Cannio, R., Bartolucci, S. & Klinman, J.P. Enzyme dynamics and hydrogen tunneling in a thermophilic alcohol dehydrogenase. Nature 399, 496–499 (1999).

    Article  CAS  Google Scholar 

  52. Antoniou, D. & Schwartz, S.D. Internal enzyme motions as a source of catalytic activity: rate-promoting vibrations and hydrogen tunneling. J. Phys. Chem. B 105, 5553–5558 (2001).

    Article  CAS  Google Scholar 

  53. Balabin, I.A. & Onuchic, J.N. Dynamically controlled protein tunneling paths in photosynthetic reaction centers. Science 290, 114–118 (2000).

    Article  CAS  Google Scholar 

  54. Malmendal, A., Evenäs, J., Forsén, S., & Akke, M. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. J. Mol. Biol. 293, 883–899 (1999).

    Article  CAS  Google Scholar 

  55. Feher, V. A. & Cavanagh, J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 400, 289–293 (1999).

    Article  CAS  Google Scholar 

  56. Volkman, B.F., Lipson, D., Wemmer, D.E., & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  Google Scholar 

  57. Tolman, J.R., Al-Hashimi, H.M., Kay, L.E. & Prestegard, J.H. Structural and dynamic analysis of residual dipolar coupling data of proteins. J. Am. Chem. Soc. 123, 1416–1424 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank A. Palmer, K. Sharp and W. Englander for helpful discussion. This work was supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wand, A. Dynamic activation of protein function: A view emerging from NMR spectroscopy. Nat Struct Mol Biol 8, 926–931 (2001). https://doi.org/10.1038/nsb1101-926

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1101-926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing