Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of the thymidine kinase from herpes simplex virus type-I in complex with deoxythymidine and Ganciclovir

Abstract

The crystal structures of thymidine kinase from herpes simplex virus type-1 complexed with its natural substrate deoxythymidine (dT) and complexed with the guanosine analogue Ganciclovir have been solved. Both structures are in the C2221 crystal form with two molecules per asymmetric unit related by a non-crystal lographic two-fold axis. The present models have been refined to 2.8 Å and 2.2 Å, with crystal lographic R factors of 24.1% and 23.3% for the dT and Ganciclovir complexes respectively, without the inclusion of any solvent molecules. The core of the molecule exhibits high structural homology with adenylate kinase and other nucleotide binding proteins. These structural similarities provide an insight into the mechanism of nucleoside phosphorylation by thymidine kinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schulz, G.E., Muller, C.W. & Diederichs, K. Induced-fit movements in adenylate kinase. J. molec. Biol. 213, 627–630 (1990).

    Article  CAS  Google Scholar 

  2. Dreusicke, D., Karplus, P.A. & Schulz, G.E. Refined structure of porcine cytosolic adenylate kinase at 2.1Å resolution. J. molec. Biol. 199, 359–371 (1988).

    Article  CAS  Google Scholar 

  3. Balasubramaniam, N.K., Veerisetty, V. & Gentry, G.A. Herpes viral deoxythymidine kinases contain a site analogous to the phosphoryl-binding arginine-rich region of porcine adenylate kinase; comparison of secondary structure predictions and conservation. J. gen. Virol. 71, 2979–2987 (1990).

    Article  CAS  Google Scholar 

  4. Folkers, G. et al. Computer-aided active-site-directed modeling of the Herpes simplex virus 1 and human thymidine kinase. J. comput. aided molec. Des. 5, 385–404 (1991).

    Article  CAS  Google Scholar 

  5. Robertson, G.R. & Whalley, J.M. Evolution of the herpes thymdine kinase: identification and comparison of the equine herpesvirus-1 thymidine kinase gene reveals similarities to cell-encoded thymidylate kinase. Nucleic acids Res. 16, 11303–11317 (1988).

    Article  CAS  Google Scholar 

  6. Taylor, W.R. & Orengo, C.A. A local alignment method for protein structure motifs. J. molec. Biol. 233, 488–497 (1993).

    Article  Google Scholar 

  7. Black, M.E. & Hruby, D.E. Identification of the ATP-binding domain of vaccina virus thymidine kinase. J. biol. Chem. 265, 17584–17592 (1990).

    CAS  PubMed  Google Scholar 

  8. Black, M.E. & Loeb, L.A. Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: analysis of selected mutants in vitro. Biochemistry 32, 11618–11626 (1993).

    Article  CAS  Google Scholar 

  9. Cole, C.N. & Stacy, T.P. Identification of sequences in the herpes simplex virus thymidine kinase gene required for efficient processing and polyadenylation. Mol. cell. Biol. 5, 2104–2013 (1985).

    Article  CAS  Google Scholar 

  10. Dube, D.K., et al. Artificial mutants generated by the insertion of random oligonucleotides into the putative nucleoside binding site of the HSV-1 thymidine kinase gene. Biochemistry 30, 11760–11767 (1991).

    Article  CAS  Google Scholar 

  11. Munir, K.M., French, D.C., Dube, D.K. & Loeb, L.A. Permissable amino acid substitutions within the putative nucleoside binding site of Herpes simplex virus type-I established by random sequence mutagenesis. J. biol. Chem. 267, 6584–6589 (1992).

    CAS  PubMed  Google Scholar 

  12. Liu, Q. & Summers, W.C. Site-directed mutagenesis of a nucleotide-binding domain in HSV-1 thymidine kinase: effects on catalytic activity. Virology 163, 638–642 (1988).

    Article  CAS  Google Scholar 

  13. La Cour, T.F.M., Nyborg, J., Thirup, S. & Clark, B.F.C. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli a study by X-ray crystallography. EMBO J. 4, 2385–2388 (1985).

    Article  CAS  Google Scholar 

  14. Pai, E.F., et al. Structure of the guanosine nucleotide binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214 (1989).

    Article  CAS  Google Scholar 

  15. Diederichs, K. & Schulz, G.E. The three-dimensional structure of the complex between the mitochondrial matrix adenylate kinase and its substrate AMP. Biochemistry 29, 8138–8144 (1990).

    Article  CAS  Google Scholar 

  16. Yan, H. & Tsai, M.-D. Mechanism of adenylate kinase. Demonstration of a functional relationship between Aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR. Biochemistry 30, 5539–5546 (1991).

    Article  CAS  Google Scholar 

  17. Larder, B.A., Derse, D., Cheng, Y.-C. & Darby, G. Properties of purified enzymes induced by pathogenic drug-resistant mutants of herpes simplex virus. J. biol. Chem. 258, 2027–2033 (1983).

    CAS  PubMed  Google Scholar 

  18. Karkas, J.D. et al. Stereochemical considerations in the enzymatic phosphorylation and antiviral activity of acyclonucleosides. I. Phosphorylation of 2′-nor-2′-deoxyguanosine, Biochem. biophys. Acta 911, 127–135 (1987).

    CAS  PubMed  Google Scholar 

  19. Sawyer, M.H. et al. Molecular analysis of the pyrimidine deoxyribonucleoside kinase gene of wild-type and acyclovir-resistant strains of Varizella-Zoster virus. J. gen. Virol. 69, 2585–2593 (1988).

    Article  CAS  Google Scholar 

  20. Roberts, G.B., Fyfe, J.A., Gaillard, R.K. & Short, S.A. Mutant varicella-zoster virus thymidine kinase - correlation of clinical resistance and enzyme impairment. J. Virology 65, 6407–6413 (1991).

    CAS  PubMed  Google Scholar 

  21. Summers, W.C. & Raksin, P. A method for selection of mutations at the tdk locus in Escherichia-coli. J. Bact. 175, 6049–6051 (1993).

    Article  CAS  Google Scholar 

  22. Black, M.E. & Hruby, D.E. A single amino acid substitution abolishes feedback inhibition of vaccinia virus thymidine kinase, J. biol. Chem. 267, 9743–9748 (1992).

    CAS  PubMed  Google Scholar 

  23. Tung, P.P., Respass, J. & Summers, W.C. 3′-Amino thymidine affinity matrix for the purification of herpes simplex thymidine kinase. J. biol. Med. in the press (1995).

    Google Scholar 

  24. Sanderson, M.R. et al. Purification and crystallisation of thymidine kinase of herpes simplex virus type 1. J. molec. Biol. 202, 917–919 (1988).

    Article  CAS  Google Scholar 

  25. Terwilliger, T.C., Kim, S.H. & Eisenberg, D. Generalized-method of determining heavy-atom positions using the difference patterson function. Acta crystallogr. A43, 1–5 (1987).

    Article  CAS  Google Scholar 

  26. Sheldrick, G.M. Phase Annealing In Shelx-90 - Direct methods for larger structures. Acta crystallogr. A46, 467–473 (1990).

    Article  CAS  Google Scholar 

  27. Steigemann, W. A program system for the crystal analysis of proteins (Max-Planck Institute für Biochimie, Martensreid, Germany; 1989).

  28. Kleywegt, G.J. & Jones, T.A. in From first map to final model. (Eds Bailey, S. & Waller, D.) 59–66 (SERC Daresbury Laboratory; 1994).

    Google Scholar 

  29. Abrahams, J.P., Leslie, A.G.W., Lutter, R. & Walker, J.E. Structure at 2.8-Angstrom resolution of F1-ATPase from bovine heart-mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  30. Jones, T.A. & Thirup, S. Using known substructures in protein model building and crystallography. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

  31. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the locations of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  32. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK–A program to check the stereochemical quality of protein structures. J. appl. crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D., Visse, R., Sandhu, G. et al. Crystal structures of the thymidine kinase from herpes simplex virus type-I in complex with deoxythymidine and Ganciclovir. Nat Struct Mol Biol 2, 876–881 (1995). https://doi.org/10.1038/nsb1095-876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1095-876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing