Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C2 domain conformational changes in phospholipase C-δ1

Abstract

The structure of the PH-domain truncated core of rat phosphoinositide-specific phospholipase C-δ1 has been determined at 2.4 Å resolution and compared to the structure previously determined in a different crystal form. The stereochemical relationship between the EF, catalytic, and C2 domains is essentially identical. The Ca2+ analogue Sm3+ binds at two sites between the jaws of the C2 domain. Sm3+ binding ejects three lysine residues which bridge the gap between the jaws and occupy the Ca2+ site in the apoenzyme, triggering a conformational change in the jaws. The distal sections of the C2 jaws move apart, opening the mouth by 9 Å and creating a gap large enough to bind a phospholipid headgroup.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rhee, S.G. & Choi, K.D. Regulation of inositol phospholipid-specific phospholipase C isozymes. J. Biol. Chem. 267, 12393–12396 (1992).

    CAS  PubMed  Google Scholar 

  2. Lee, S.B. & Rhee, S.G. Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr. Opinion Cell Biol. 7, 183–189 (1995).

    CAS  PubMed  Google Scholar 

  3. Yagisawa, H. et al. Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ1 . J. Biol. Chem. 269, 20179–20188 (1994).

    CAS  PubMed  Google Scholar 

  4. Garcia, P. et al. The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34, 16228–16234 (1995).

    CAS  PubMed  Google Scholar 

  5. Paterson, H.F. et al. Phospholipase C δ1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem. J. 312, 661–666 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Essen, L.-O., Perisic, O., Cheung, R., Katan, M. & Williams, R.L. Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ. Nature 380, 595–602 (1996).

    CAS  PubMed  Google Scholar 

  7. Sutton, R.B., Davletov, B.A., Berghuis, A.M., Sudhof, T.C. & Sprang, S.R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929–938 (1995).

    CAS  PubMed  Google Scholar 

  8. Newton, A.C. Seeing two domains. Current Biol. 5, 973–976 (1995).

    CAS  Google Scholar 

  9. Ponting, C.P. & Parker, P. Extending the C2 domain family: C2s in PKCs δ, ε, η, θ, phospholipases, GAPs, and perforin. Prot. Sci. 5, 162–166 (1996).

    CAS  Google Scholar 

  10. Eck, M.J., Atwell, S.K., Shoelson, S.E. & Harrison, S.C. Structure of the regulatory domains of the src-family tyrosine kinase lck. Nature 268, 764–769 (1994).

    Google Scholar 

  11. Maignan, S. et al. Crystal structure of the mammalian Grb2 adaptor. Science 268, 291–293 (1995).

    CAS  PubMed  Google Scholar 

  12. Hatada, M. et al. Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature 377, 32–38 (1995).

    CAS  PubMed  Google Scholar 

  13. Eck, M.J., Pluskey, S., Trub, T., Harrison, S.C. & Shoelson, S.E. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2. Nature 379, 277–280 (1996).

    CAS  PubMed  Google Scholar 

  14. Takenawa, T., Homma, Y. & Emori, Y. Properties of phospholipase C isozymes. Methods Enzymol. 197, 511–517 (1991).

    CAS  PubMed  Google Scholar 

  15. Nakashima, S. et al. Deletion and site-directed mutagenesisof EF-hand domain of phospholipase C-δ1: effects on its activity. Biochem. Biophys. Res. Comm. 211, 364–369 (1995).

    CAS  Google Scholar 

  16. Ellis, M.V., Carne, A. & Katan, M. Structural requirements of phosphatidylinositol-specific phospholipase Cδ1, for enzyme activity. Eur. J. Biochem. 213, 339–347 (1993).

    CAS  PubMed  Google Scholar 

  17. Davletov, B.A. & Sudhof, T.C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 268, 26386–26390 (1993).

    CAS  PubMed  Google Scholar 

  18. Chapman, E.R. & Jahn, R. Ca2+-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. J. Biol. Chem. 269, 5735–5741 (1994).

    CAS  PubMed  Google Scholar 

  19. Clark, J.D. et al. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65, 1043–1051 (1991).

    CAS  PubMed  Google Scholar 

  20. Nafelski, E.A. et al. Delineation of two functionally distinct domains of cytosolic phospholipase A2, a regulatory Ca2+-dependent lipid-binding domain and a Ca2+-independent catalytic domain. J. Biol. Chem. 269, 18239–18249 (1994).

    Google Scholar 

  21. Matthews, B.W. & Weaver, L.H. Binding of lanthanide ions to thermolysin. Biochemistry 13, 1719–1725 (1974).

    CAS  PubMed  Google Scholar 

  22. Grobler, J.A. & Hurley, J.H. Expression, characterization, and crystallization of the catalytic core of rat phosphatidylinositide-specific phospholipase C δ1 . Prot. Sci. 5, 680–686 (1996).

    CAS  Google Scholar 

  23. Cifuentes, M.E., Honkanen, L. & Rebecchi, M.J. Proteolytic fragments of phosphoinositide-specific phospholipase C-δ1 . J. Biol. Chem. 268, 11586–11593 (1993).

    CAS  PubMed  Google Scholar 

  24. Herzberg, O., Moult, J. & James, M.N.G. A model for the Ca2+-induced conformational transition of troponin-C. J. Biol. Chem. 261, 2638–2644 (1986).

    CAS  PubMed  Google Scholar 

  25. Zhang, M., Tanaka, T. & Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature Struct. Biol. 2, 758–767 (1995).

    CAS  PubMed  Google Scholar 

  26. Kuboniwa, H. et al. Solution structure of calcium-free calmodulin. Nature Struct. Biol. 2, 768–776 (1995).

    CAS  PubMed  Google Scholar 

  27. Faber, H.R. & Matthews, B.W. A mutant T4 lysozyme displays five different crystal conformations. Nature 348, 263–266 (1990).

    CAS  PubMed  Google Scholar 

  28. Davletov, B.A. & Sudhof, T.C. Ca2+-dependent conformational change in synaptotagmin I. J. Biol. Chem. 269, 28547–28550 (1994).

    CAS  PubMed  Google Scholar 

  29. Swairjo, M.A., Concha, N.O., Kaetzel, M.A., Dedman, J.R. & Seaton, B.A. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature Struct. Biol. 2, 968–974 (1995).

    CAS  PubMed  Google Scholar 

  30. Bazzi, M.D. & Nelsestuen, G.L. Protein kinase C interaction with calcium: a phospholipid-dependent process. Biochemistry 29, 7624–7630 (1990).

    CAS  PubMed  Google Scholar 

  31. Orr, J.W. & Newton, A.C. Interaction of protein kinase C with phosphatidylserine. 1. Cooperativity in lipid binding. Biochemistry 31, 4667–4673 (1992).

    CAS  PubMed  Google Scholar 

  32. Newton, A.C. and Keranen, L.M. Phosphatidyl-L-serine is necessary for protein kinase C's high-affinity interaction with diacylglycerol-containing membranes. Biochemistry 33, 6651–6658 (1994).

    CAS  PubMed  Google Scholar 

  33. Mosior, M. & Epand, R.M. Mechanism of activation of protein kinase C: roles of diolein and phosphatidylserine. Biochemistry 32, 66–75 (1993).

    CAS  PubMed  Google Scholar 

  34. Fukuda, M., Kojima, T. & Mikoshiba, K. Phospholipid composition dependence of Ca2+-dependent phospholipid binding to the C2A domain of synaptotagmin IV. J. Biol. Chem. 271, 8430–8434 (1996).

    CAS  PubMed  Google Scholar 

  35. Otwinowski, Z. DENZO. A program for automatic evaluation of film densities. Dept. of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT. (1988).

    Google Scholar 

  36. Navaza, J. AMoRE- an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).

    CAS  Google Scholar 

  37. Brünger, A.T. X-PLOR Version 3.1. A system for x-ray crystallography and NMR. Yale University Press, New Haven, CT. (1992).

  38. Collaborative Computational Project, No. 4. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  39. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, 140–149 (1986).

    CAS  Google Scholar 

  40. Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. An efficient general-purpose least squares refinement program for macromolecular structures. Acta Crystallogr. A43, 489–501 (1987).

    CAS  Google Scholar 

  41. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr. A47, 392–400 (1991).

    CAS  Google Scholar 

  42. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    CAS  Google Scholar 

  43. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK- a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291.

    CAS  Google Scholar 

  44. Kraulis, P. MOLSCRIPT- a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

  45. Carson, M. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grobler, J., Essen, LO., Williams, R. et al. C2 domain conformational changes in phospholipase C-δ1. Nat Struct Mol Biol 3, 788–795 (1996). https://doi.org/10.1038/nsb0996-788

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0996-788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing