Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor

Abstract

The structure of the ternary complex between ovine placental lactogen (oPL) and the extracellular domain (ECD) of the rat prolactin receptor (rPRLR) reveals that two rPRLR ECDs bind to opposite sides of oPL with pseudo two-fold symmetry. The two oPL receptor binding sites differ significantly in their topography and electrostatic character. These binding interfaces also involve different hydrogen bonding and hydrophobic packing patterns compared to the structurally related human growth hormone (hGH)–receptor complexes. Additionally, the receptor–receptor interactions are different from those of the hGH–receptor complex. The conformational adaptability of prolactin and growth hormone receptors is evidenced by the changes in local conformations of the receptor binding loops and more global changes induced by shifts in the angular relationships between the N- and C-terminal domains, which allow the receptor to bind to the two topographically distinct sites of oPL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The oPL–rPRLR2 ternary complex.
Figure 2: Ribbon diagram of oPL (left) and hGH (right).
Figure 3: Sequence alignment of hGH, hPRL and oPL.
Figure 4: Electrostatic rendering of hGH (left) and oPL (right).
Figure 5: Decrease in solvent accessibility on complex formation.
Figure 6: A 2Fo−Fc Fourier map contoured at 1 σ showing the packing of TrpR 104 and TrpR 169.
Figure 7: Electrostatic rendering and receptor–receptor orientation for rPRLR (R1 and R2) (left) and hGHR (right).
Figure 8: van der Waals packing environment of TrpR 169 at site 2 of hGH–hGHR2 superimposed onto oPL–R2.

Similar content being viewed by others

References

  1. DeVlaming, V. Actions of prolactin among the vertebrates. In Hormones and evolution (ed., Barrington, E.J.W.), 561–642 (Academic Press, New York; 1979).

    Google Scholar 

  2. Sinha, Y.N. Structural variants of prolactin: occurrence and physiological significance. Endocrine Rev. 16, 354–369 (1995).

    Article  CAS  Google Scholar 

  3. Goffin, V., Shiverick, K.T., Kelly, P.A. & Martial, J.A. Sequence-function relationships within the expanding family of prolactin, growth hormone, placental lactogen, and related proteins in mammals. Endocrine Rev. 17, 385–410 (1996).

    CAS  Google Scholar 

  4. Nicoll, C.S., Mayer, G.L. & Russel, S.M. Structural features of prolactins and growth hormones that can be related to their biological properties. Endocrine Rev. 7, 169–203 (1986).

    Article  CAS  Google Scholar 

  5. Gertler, A., Grosclaude, J., Strasburger, C.J., Nir, S. & Djiane, J. Real-time kinetic measurements of the interactions between lactogenic hormones and prolactin-receptor extracellular domains from several species support the model of hormone-induced transient receptor dimerization. J. Biol. Chem. 271, 24482–24491 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. De Vos, A.M., Ultsch, M. & Kossiakoff, A.A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Kelly, P.A., et al. The growth hormone/prolactin receptor gene family. Oxford Surveys On Eukaryotic Genes 7, 29–50 (1991).

    CAS  PubMed  Google Scholar 

  8. Schindler, C. & Darnell, J.E.J. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64, 621–651 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Ihle, J.N., et al. Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem. Sci. 19, 222–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Bazan, J.F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87, 6934–6938 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cosman, D., et al. A new cytokine receptor superfamily. Trends Biochem. Sci. 15, 265–270 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Fuh, G., et al. Rational design of potent antagonists to the human growth hormone receptor. Science 256, 1677–1680 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Sandowski, Y., et al. Preparation and characterization of recombinant prolactin receptor extracellular domain from rat. Mol. Cell. Endocrinol. 115, 1–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Tchelet, A. Extracellular domain of prolactin receptor from bovine mammary gland: expression in Escherichia coli, purification and characterization of its interaction with lactogenic hormones. J. Endocrinol. 144, 393–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Sakal, E., et al. Large-scale preparation and characterization of recombinant ovine placental lactogen. J. Endocrinol. 152, 317–327 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Sakal, E., et al. Cloning, preparation, and characterization of biologically active recombinant caprine placental lactogen. J. Endocrinol. 159, 509–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Sakal, E., Elberg, G. & Gertler, A. Direct evidence that lactogenic hormones induce homodimerization of membrane-anchored prolactin receptor in intact Nb2-11C rat lymphoma cells. FEBS Lett. 410, 289–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Colosi, P., et al. Cloning and expression of ovine placental lactogen. Mol. Endocrinol. 3, 1462–1469 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Syed, R.S. et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395, 511–516 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Livnah, O. et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 Å. Science 273, 464–471 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Kossiakoff, A.A. & De Vos, A.M. Structural basis for cytokine hormone-receptor recognition and receptor activation. Adv. Protein Chem. 52, 67–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Abdel-Meguid, S.S. et al. Three-dimensional structure of a genetically engineered variant of porcine growth hormone. Proc. Natl. Acad. Sci. USA 84, 6434–6437 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Rhee, H.K. et al. Biological activity and immunological reactivity of human prolactin mutants. Endocrinology 136, 4990–49995 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Gertler, A., et al. Preparation, purification, and determination of the biological activities of 12 N terminus-truncated recombinant analogues of bovine placental lactogen. J. Biol. Chem. 267, 12655–12659 (1992).

    CAS  PubMed  Google Scholar 

  25. Rosakis-Adcock, M. & Kelley, P.A. Identification of ligand binding determinants of the prolactin receptor. J. Biol. Chem. 267, 7428–7433 (1992).

    Google Scholar 

  26. Somers, W., Ultsch, M., De Vos, A.M. & Kossiakoff, A.A. The X-ray structure of the growth hormone-prolactin receptor complex. Nature 372, 478–481 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Kossiakoff, A.A. et al. Comparison of the intermediate complexes of human growth hormone bound to the human growth hormone and prolactin receptors. Protein Sci. 3, 1697–1705 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wilson, I.A. & Jolliffe, L.K. The structure, organization, activation and plasticity of the erythropoietin receptor. Curr. Opin. Struct. Biol. 9, 696–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Cunningham, B.C. & Wells, J.A. Rational design of receptor-specific variants of human growth hormone. Proc. Natl. Acad. Sci. USA 88, 3407–3411 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cunningham, B.C., Bass, S., Fuh, G. & Wells, J.A. Zinc mediation of the binding of human growth hormone to the human prolactin receptor. Science 250, 1709–1712 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Clackson, T. & Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Remy, I., Wilson, I.A. & Michnick, S.W. Erythropoietin receptor activation by ligand-induced conformation change science. Science 283, 990–993 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Livnah, O., et al. An antagonist peptide-EPO receptor complex suggests that receptor dimerization is not sufficient for activation. Nature Struct. Biol. 5, 993–1004 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Livnah, O. et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283, 987–990 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Herman, A., Helman, D., Livnah, O. & Gertler, A. Ruminant placental lactogens act as antagonists to homologous growth hormone receptors and as agonists to human or rabbit growth hormone receptors. J. Biol. Chem. 274, 7631–7639 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Lebrun, J.J., Ali, S., Sofer, L., Ullrich, A. & Kelly, P.A. Prolactin-induced proliferation of Nb2 cells involves typrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J. Biol. Chem. 269, 14021–140266 (1994).

    CAS  PubMed  Google Scholar 

  37. Argetsinger, L. et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74, 237–244 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Pearce, K.H., Cunningham, B.C., Fuh, G., Teeri, T. & Wells, J.A. Growth hormone binding affinity for its receptor surpasses the requirements for cellular activity. Biochemistry 38, 81–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Christinger, H.W. et al. Crystallization of ovine placental lactogen in a 1:2 complex with the extracellular domain of the rat prolactin receptor. Acta Crystallogr. D 54, 1408–1411 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Collaborative Computational Project, Number 4. CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  41. Brünger, A.T. X-PLOR reference manual 3.0 edn (Molecular Simulations, Inc., Waltham, Massachusetts; 1992).

    Google Scholar 

  42. Huang, M. et al. The mechanism of an inhibitory antibody on TF-initiated blood coagulation revealed by the crystal structures of human tissue factor, Fab 5G9 and TF.G9 complex. J. Mol. Biol. 275, 873–894 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, X.J. & Matthews, B.W. Enhancement of the method of molecular replacement by incorporation of known structural information. Acta Crystallogr. D 50, 675–686 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Inaka, K., Taniyama, Y., Kikuchi, M., Morikawa, K. & Matsushima, M. The crystal structure of a mutant human lysozyme C77/95A with increased secretion efficiency in yeast. J. Biol. Chem. 266, 12599–12603 (1991).

    CAS  PubMed  Google Scholar 

  45. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  PubMed  Google Scholar 

  46. Read, R. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  47. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  PubMed  Google Scholar 

  48. Nicholls, A., Bharadwajj, R. & Honig, B. GRASP: graphical representation and analysis of surface properties. Biophys. J. 64, A166 (1993).

    Google Scholar 

Download references

Acknowledgements

We thank the staff at the SSRL and at CHESS for help with beamlines 7-1 and A-1, respectively; M. Randal, C. Eigenbrot, N. Gerber, Y. Muller and C. Wiesmann for help with data collection; and W. Anstine and B. Bernat for help with the figures. Part of this research was supported by the United States–Israel Binational Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Kossiakoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkins, P., Christinger, H., Sandowski, Y. et al. Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor. Nat Struct Mol Biol 7, 808–815 (2000). https://doi.org/10.1038/79047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing