Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The extended and eccentric E-DNA structure induced by cytosine methylation or bromination

Abstract

Cytosine methylation or bromination of the DNA sequence d(GGCGCC)2 is shown here to induce a novel extended and eccentric double helix, which we call E-DNA. Like B-DNA, E-DNA has a long helical rise and bases perpendicular to the helix axis. However, the 3′-endo sugar conformation gives the characteristic deep major groove and shallow minor groove of A-DNA. Also, if allowed to crystallize for a period of time longer than that yielding E-DNA, the methylated sequence forms standard A-DNA, suggesting that E-DNA is a kinetically trapped intermediate in the transition to A-DNA. Thus, the structures presented here chart a crystallographic pathway from B-DNA to A-DNA through the E-DNA intermediate in a single sequence. The E-DNA surface is highly accessible to solvent, with waters in the major groove sitting on exposed faces of the stacked nucleotides. We suggest that the geometry of the waters and the stacked base pairs would promote the spontaneous deamination of 5-methylcytosine in the transition mutation of dm5C-dG to dT-dA base pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparing E-DNA with B-DNA and A-DNA.
Figure 2: Electron density maps showing stereo views looking into the major grooves of the B-, E-, and A-DNA structures.
Figure 3: Waters in the CpG dinucleotides of B-DNA and E-DNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Noyer-Weidner, M. & Trautner, T.A. In DNA methylation: molecular biology and biological significance. (eds, Jost, J.P. & Saluz, H.P.), 39–108 (Birkhäuser Verlag, Boston; 1993).

    Book  Google Scholar 

  2. Singer-Sam, J. & Riggs, A.D. In DNA methylation: molecular biology and biological significance. (eds, Jost, J.P. & Saluz, H.P.) 358–384 (Birkhäuser Verlag, Boston; 1993).

    Book  Google Scholar 

  3. Sasaki, H., Allen, N.D. & Surani, M.A. In DNA Methylation: Molecular Biology and Biological Significance. (eds Jost, J.P. & Saluz, H.P.) 469–486 (Birkhäuser Verlag, Boston, 1993).

    Book  Google Scholar 

  4. Antequera, F. & Bird, A. In DNA methylation: molecular biology and biological significance. (eds, Jost, J.P. & Saluz, H.P.), 169–185 (Birkhäuser Verlag, Boston; 1993).

    Book  Google Scholar 

  5. Mooers, B.H.M., Schroth, G.P., Baxter, W.W. & Ho, P.S. J. Mol. Biol. 249, 772–784 (1995).

    Article  CAS  Google Scholar 

  6. Frederick, C.A. et al. Biopolymers 26, S145–S160 (1987).

    Article  Google Scholar 

  7. Behe, M. & Felsenfeld, G. Proc. Natl Acad. Sci. USA 78, 1619–1623 (1981).

    Article  CAS  Google Scholar 

  8. Fujii, S., Wang, A.H.-J., van der Marel, G., van Boom, J.H. & Rich, A. Nucleic Acids Res. 10, 7879–7892 (1982).

    Article  CAS  Google Scholar 

  9. Timsit, Y. & Moras, D. Methods Enzymol. 211, 409–429 (1992).

    Article  CAS  Google Scholar 

  10. Xu, Q., Shoemaker, R.K. & Braunlin, W.H. Biophys. J. 65, 1039–1049 (1993).

    Article  CAS  Google Scholar 

  11. Takahara, P.M., Rosenzweig, A.C., Frederick, C.A. & Lippard, S.J. Nature 377, 649–652 (1995).

    Article  CAS  Google Scholar 

  12. Arnott, S., Chandrasekaran, R., Millane, R.P. & Park, H.-S. J. Mol. Biol. 188, 631–640 (1986).

    Article  CAS  Google Scholar 

  13. Doucet, J., Benoit, J.-P., Cruse, W.B.T., Prange, T. & Kennard, O. Nature 337, 190–192 (1989).

    Article  CAS  Google Scholar 

  14. Mayer-Jung, C., Moras, D. & Timsit, Y. EMBO J. 17, 2709–2718 (1998).

    Article  CAS  Google Scholar 

  15. Timsit, Y. & Moras, D. EMBO J. 13, 2737–2746 (1994).

    Article  CAS  Google Scholar 

  16. Wang, A.H.-J., Fujii, S., van Boom, J.H. and Rich, A. Proc. Natl. Acad. Sci. USA 79, 3968–3972 (1982).

    Article  CAS  Google Scholar 

  17. Ng, H.-L., Kopka, M.L., & Dickerson, R.E. Proc. Natl. Acad. Sci. USA 97, 2035–2039 (2000).

    Article  CAS  Google Scholar 

  18. Zhang, X. & Mathews, C.K. J. Biol. Chem. 269, 7066–7069 (1994).

    CAS  PubMed  Google Scholar 

  19. Brünger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  20. Dickerson, R.E. Methods Enzymol. 211, 67–111 (1992).

    Article  CAS  Google Scholar 

  21. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  22. Lavery, R. & Sklenar, H. J. Biomol. Struct. Dyn. 6, 655–667 (1989).

    Article  CAS  Google Scholar 

  23. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  24. Carter, C.W. Jr., Biochimie 77, 92–98 (1995).

    Article  CAS  Google Scholar 

  25. Weiner, S.J. et al. J. Am. Chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Pflugrath, J.W. Acta Crystallogr. D 55, 1718–1725 (1999).

    Article  CAS  Google Scholar 

  28. Parkinson, G., Vojtechovsky, J., Clowney, L., Brünger, A.T. & Berman, H.M. Acta Crystallogr. D 52, 57–64 (1996).

    Article  CAS  Google Scholar 

  29. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  30. Brünger, A.T. Nature 355, 472–475 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B.H.M. Mooers and the P.A. Karplus laboratory for helpful discussion, and K.E. van Holde, C.K. Mathews, and W.C. Johnson, Jr. for reading this manuscript. This work was supported by the National Science Foundation, the Oregon American Cancer Society, and the Environmental Heath Science Center at OSU. X-ray facilities were funded in part by the M.J. Murdock Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shing Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargason, J., Eichman, B. & Ho, P. The extended and eccentric E-DNA structure induced by cytosine methylation or bromination. Nat Struct Mol Biol 7, 758–761 (2000). https://doi.org/10.1038/78985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing