Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Changes in side chain packing during apomyoglobin folding characterized by pulsed thiol-disulfide exchange

Abstract

It is clear that close-packed side chain interactions play a dominant role in stabilizing native proteins, but the extent to which they stabilize kinetic intermediates and shape the energetic landscape of folding is not known. A method for characterizing structural changes at the level of individual side chains is presented and applied to study the refolding of apomyoglobin mutants containing engineered cysteine residues at key helical packing interfaces. The formation of buried side chain structure at the probe sites is followed by the extent of thiol-disulfide exchange during a pulse of thiol labeling reagent (either methyl methanethiosulfonate or 5,5'-dithiobis (2-nitrobenzoic acid)) applied at various stages of folding. The results suggest that the eight helices pack in at least three distinct stages, involving formation of two intermediates with time constants of <2 ms and 50 ms. In some parts of the refolding protein, stable side chain structure can be attained very rapidly, possibly in advance of backbone hydrogen bond formation as detected by previous pulsed amide hydrogen exchange experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locations of introduced cysteine residues in Mb. Helices are lettered A–H.
Figure 2: pH-induced equilibrium unfolding of apoMb monitored by Trp fluorescence.
Figure 3: a, b, Urea-induced equilibrium unfolding of apoMb monitored by Trp fluorescence.
Figure 4: Kinetics of thiol-disulfide exchange protection at 4 °C.
Figure 5: Simulation of thiol-disulfide exchange protection for a, S108C and b, A110C using equation 4.

Similar content being viewed by others

References

  1. Richards, F.M. The interpretation of protein structures: total volume, group volume distributions and packing density. J. Mol. Biol. 82, 1– 14 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Richards, F.M. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng. 6, 151– 176 (1977).

    Article  CAS  Google Scholar 

  3. Levitt, M., Gerstein, M., Huang, E., Subbiah, S. & Tsai, J. Protein folding: the endgame. Annu. Rev. Biochem. 66, 549– 579 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kuriyan, J., Wilz, S., Karplus, M. & Petsko, G.A. X-ray structure and refinement of carbon-monoxy Fe(II) myoglobin at 1. 5 Å resolution . J. Mol. Biol. 192, 133– 154 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892– 895 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Jamin, M. & Baldwin, R.L. Refolding and unfolding kinetics of the equilibrium folding intermediate of apomyoglobin. Nature Struct. Biol. 3, 613– 618 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Kay, M.S. & Baldwin, R.L. Packing interactions in the apomyoglobin folding intermediate. Nature Struct. Biol. 3, 439– 445 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Loh, S.N., Kay, M.S. & Baldwin, R.L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc. Natl. Acad. Sci. USA 92, 5446– 5450 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Eliezer, D., Yao, J., Dyson, H.J. & Wright, P.E. Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nature Struct. Biol. 5, 148– 155 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Roberts, D.D., Lewis, S.D., Ballou, D.P., Olson, S.T. & Shafer, J.A. Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. Biochemistry 25, 5595– 5601 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Kluger, R. & Tsui, W.-C. Amino group reactions of the sulfhydryl reagent methyl methanesulfonothioate. Inactivation of D-3-hydroxybutyrate dehydrogenase and reaction with amines in water. Can. J. Biochem. 58, 629– 632 ( 1979).

    Article  Google Scholar 

  12. Riddles, P.W., Blakeley, R.L. & Zerner, B. Ellman's reagent: 5,5'-dithiobis(2-nitrobenzoic acid) — a reexamination . Anal. Biochem. 94, 75– 81 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Barrick, D. & Baldwin, R.L. Three-state analysis of sperm whale apomyoglobin folding. Biochemistry 32, 3790– 3796 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Glimanshin, R., Callender, R.H. & Dyer, R.B. The core of apomyoglobin E-form folds at the diffusion limit. Nature Struct. Biol. 5, 363– 365 (1998).

    Article  Google Scholar 

  15. Nishii, I., Kataoka, M., Tokunaga, F. & Goto, Y. Cold denaturation of the molten globule states of apomyoglobin and a profile for protein folding . Biochemstry 33, 4903– 4909 (1994).

    Article  CAS  Google Scholar 

  16. Jocelyn, P.C. Biochemistry of the SH group, (Academic Press, Inc., London; 1972 ).

    Google Scholar 

  17. Weaver, D.L. Hydrophobic interaction between globin helices. Biopolymers 32, 477– 490 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51– 55 (1996).

    Article  CAS  Google Scholar 

  19. Kirby, E.P. & Steiner, R.F. The tryptophan microenvironments in apomyoglobin. J. Biol. Chem. 245, 6300 – 6306 (1970).

    CAS  PubMed  Google Scholar 

  20. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544– 1548 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Jamin, M. & Baldwin, R.L. Two forms of the pH 4 folding intermediate of apomyoglobin. J. Mol. Biol., 276, 491– 504 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Hvidt, A. & Nielsen, S.O. Hydrogen exchange in proteins . Adv. Prot. Chem. 21, 287– 385 (1966).

    CAS  Google Scholar 

  23. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: native-state hydrogen exchange. Science 269, 192– 197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eliezer, D. & Wright, P.E. Is apomyoglobin a molten globule? Structural characterization by NMR. J. Mol. Biol. 263 , 531– 538 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Qian, H., Mayo, S.L. & Morton, A. Protein hydrogen exchange in denaturant: Quantitative analysis by a two-process model. Biochemistry 33, 8167– 8171 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Loh, S.N., Rohl, C.A., Kiefhaber, T. & Baldwin, R.L. A general two-process model describes the hydrogen exchange behavior of RNaseA in unfolding conditions. Proc. Natl. Acad. Sci. USA 93, 1982– 1987 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Roder, H., Elöve, G.A. & Englander, S.W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335, 700– 704 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Udgaonkar, J.B. & Baldwin, R.L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 335, 694– 699 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51– 59 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Fanelli, A.R., Antonini, E. & Caputo, A. Studies on the structure of hemoglobin. I. Physicochemical properties of human globin. Biochim. Biophys. Acta. 30, 608– 615 (1958).

    Article  CAS  PubMed  Google Scholar 

  31. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948– 1954 ( 1967).

    Article  CAS  PubMed  Google Scholar 

  32. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures . J. Appl. Crystallogr. 24, 946– 950 (1991).

    Article  Google Scholar 

  33. Barshop, A., Wrenn, R.F. & Frieden, C. Analysis of numerical methods for computer simulation of kinetic processes: development of KINSIM—a flexible, portable system. Anal. Biochem. 130, 134– 145 ( 1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Baldwin for providing a preprint of ref. 20 in advance of publication, C. Rohl, A. Martonosi and R. Cross for insightful discussions, and A. Martonosi for use of his spectrofluorometer. This work was supported by a grant from the Hendrick's Fund for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart N. Loh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, JH., Loh, S. Changes in side chain packing during apomyoglobin folding characterized by pulsed thiol-disulfide exchange. Nat Struct Mol Biol 5, 730–737 (1998). https://doi.org/10.1038/1436

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1436

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing