Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain

Abstract

Experimental and theoretical studies on the folding of small proteins such as the chymotrypsin inhibitor 2 (CI-2) and the P22 Arc repressor suggest that the folding transition state is an expanded version of the native state with most interactions partially formed. Here we report that this picture does not hold generally: a hydrogen bond network involving two β-turns and an adjacent hydrophobic cluster appear to be formed in the folding transition state of the src SH3 domain, while the remainder of the polypeptide chain is largely unstructured. Comparison with data on other small proteins suggests that this structural polarization is a consequence of the topology of the SH3 domain fold. The non-uniform distribution of structure in the folding transition state provides a challenging test for computational models of the folding process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Riddle, D.S., Santiago,J.V., Bray,S.T., Doshi,N., Grantcharova,V.P. & Baker, D. Functional rapidly folding proteins from simplified amino acid sequences. Nature Struct. Biol. 4, 805– 809 (1997).

    Article  CAS  Google Scholar 

  2. Xu, W., Harrison, S.C., & Eck, M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595– 602 ( 1997).

    Article  CAS  Google Scholar 

  3. Yu, H., Rosen, M.K., & Schreiber, S.L. 1H and 15N assignments and secondary structure of the Src SH3 domain. FEBS Lett. 324, 87– 92 (1993).

    Article  CAS  Google Scholar 

  4. Pace, N.C., Shirley, B.A., Mcnutt, M. & Gajiwala,K. Forces contributing to the stability of proteins. FASEB 10, 75– 83 (1996).

    Article  CAS  Google Scholar 

  5. Grantcharova, V.P. & Baker, D. Folding dynamics of the src SH3 domain . Biochemistry 36, 15685– 15692 (1998).

    Article  Google Scholar 

  6. Doyle, R., Simons, K., Qian, H. & Baker, D. Local interactions and the optimization of protein folding. Proteins Struct. Func. Gen. 29, 282– 291 ( 1997).

    Article  CAS  Google Scholar 

  7. Socci, N.D., Onuchic, J.N. & Wolynes, P.G. Diffusive dynamics of the reaction coordinate for protein folding funnels. J. Chem. Phys. 104, 5860 – 5868 (1996).

    Article  CAS  Google Scholar 

  8. Fersht, A.R. Characterizing transition states in protein folding: an essential step in the puzzle. Curr. Opin. Struct. Biol. 5, 79– 84 (1994).

    Article  Google Scholar 

  9. Yi, Q., Bystroff, C. & Baker, D. Prediction and structure characterization of an independently folding substructure in the src SH3 domain. J. Mol. Biol., in the press (1998).

  10. Zhang, O. & Forman-Kay, J.D. NMR studies of unfolded states of an SH3 domain in acqueos solution and denaturing conditions. Biochemsitry 36, 3959– 3970 (1997).

    Article  CAS  Google Scholar 

  11. Kishan, K. V. R., Scita, G., Wong, W.T., Di Fiore, P.P. & Newcomer, M.E. The SH3 domain of Eps8 exists as a novel intertwined dimer. Nature Struct. Biol. 4, 739– 743 (1997).

    Article  CAS  Google Scholar 

  12. Guijarro, J.I., Morton, C., Plaxco, K.W., Campbell, I.D. & Dobson, C.M. Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. J. Mol. Biol. 276, 657– 667 ( 1998).

    Article  CAS  Google Scholar 

  13. Woodward, C. Is the slow-exchanging core the protein folding core? TIBS 18, 359– 360 (1993).

    CAS  PubMed  Google Scholar 

  14. Gu, H., Kim, D. & Baker, D. Contrasting roles for the symmetrically disposed β-turns in the folding of a small protein. J. Mol. Biol. 274, 588 – 596 (1997).

    Article  CAS  Google Scholar 

  15. Neira, J.L., Itzhaki, L.S., Otzen, D.E., Davis, B. & Fersht, A.R. Hydrogen exchange in chymotrypsin inhibitor 2 probed by mutagenesis. J. Mol. Biol. 270, 1– 12 (1997).

    Article  Google Scholar 

  16. Shakhnovich, E., Abkevich, V. & Ptitsyn, O. Conserved residues and the mechanism of protein folding . Nature 379, 96– 98 (1996).

    Article  CAS  Google Scholar 

  17. Viguera, A.R., Serrano, L. & Wilmanns, M. Different folding transition states may result in the same native structure . Nature Struct. Biol. 3, 874– 879 (1996).

    Article  CAS  Google Scholar 

  18. Plaxco, K.W., Guijarro, J.I., Morton, C.J., Pitkeathly, M., Campbell, I.D. & Dobson, C.M. The folding kinetics and thermodynamics if the fyn SH3 domain. Biochemistry 37, 2529– 2537 (1998).

    Article  CAS  Google Scholar 

  19. Viguera, A.R., Martinez, J.C., Filimonov, V.V., Mateo, P.L., & Serrano, L. Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry 33, 2142– 2150 ( 1994).

    Article  CAS  Google Scholar 

  20. Prieto, J., Wilmans, M., Jimenez, M.A., Rico, M. & Serrano, L. Non-native interactions in protein folding and stability: introducing a helical tendency in the all β-sheet α-spectin SH3 domain. J. Mol. Biol. 268, 760– 778 (1997).

    Article  CAS  Google Scholar 

  21. Martinez, J.C., Pisabarro, M.T. & Serrano, L. Obligatory steps in protein folding and conformational diversity of the transition state. Nature Struct. Biol. 5, 721– 729 (1998).

    Article  CAS  Google Scholar 

  22. Itzhaki, L.S., Otzen, D.E. & Fersht, A.R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analyzed by protein engineering methods: evidence for a nucleation condensation mechanism for protein folding. J. Mol. Biol. 254, 260– 288 (1995).

    Article  CAS  Google Scholar 

  23. Milla, M.E., Brown, B.M., Waldburger, C.D. & Sauer, R.T. P22 Arc Repressor: Transition state properties inferred from mutational effects on the rates of protein unfolding and refolding. Biochemistry 34 , 13914– 13919 (1995).

    Article  CAS  Google Scholar 

  24. Serrano, L., Matouschek, A. & Fersht, A. The folding of an enzyme. 3. Structure of the transition state for unfolding of barnase analyzed by a protein engineering procedure. J. Mol. Biol. 224, 805– 818 ( 1992).

    Article  CAS  Google Scholar 

  25. Milla, M.E., Brown, B.M. & Sauer, R.T. Protein stability effects of a complete set of alanine substitutions in Arc repressor. Nature Struct. Biol. 1, 518– 523 (1994).

    Article  CAS  Google Scholar 

  26. Baldwin, R.L. Matching speed and stability. Nature 369, 183– 184 (1994).

    Article  CAS  Google Scholar 

  27. Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619– 20 (1995).

    Article  CAS  Google Scholar 

  28. Dill, K.A. & Chan, H.S. From Levinthal to pathways to funnels . Nature Struct. Biol. 4, 10– 19 (1997).

    Article  CAS  Google Scholar 

  29. Pande, V.S., Grosberg, A.Y., Tanaka, T. & Rokhsar, D.S. Pathways for protein folding:is a new view needed? Curr. Opin. Struct. Biol. 8, 68– 79 (1998 ).

    Article  CAS  Google Scholar 

  30. Burton, R.E., Huang, G.S., Daugherty, M.A., Calderone, T.L. & Oas, T.G. The energy landscape of a fast-folding protein mapped by Ala→Gly substitutions. Nature Struct. Biol. 4, 305– 310 (1997).

    Article  CAS  Google Scholar 

  31. Onuchic, J.N., Socci, N.D., Luthey-Schulten, Z. & Wolynes, P.G. Protein folding funnels: the nature of the transition state ensemble Folding Design 1, 441– 450 (1996).

    Article  CAS  Google Scholar 

  32. Abkevich, V.I., Gutin, A.M. & Shakhnovich, E.I. Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry 33, 10026– 10036 (1994).

    Article  CAS  Google Scholar 

  33. Plaxco, K.W., Simons, K. & Baker, D. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985– 994 (1998).

    Article  CAS  Google Scholar 

  34. Li, A. & Daggett, V. Identification and characterization of the unfolding transition state of chymotypsin inhibitor 2 by molecular dynamics simulations. J. Mol. Biol. 257, 412– 429 (1996).

    Article  CAS  Google Scholar 

  35. Schoemaker, B.A., Wang, J. & Wolynes, P.G. Structural correlations in protein folding. Proc. Natl. Acad. Sci. USA 95, 777– 782 (1997).

    Article  Google Scholar 

  36. Scalley, M.L. et al. Kinetics of folding of the IgG binding domain of peptostreptoccocal protein L . Biochemistry 36, 3373– 3382 (1996).

    Article  Google Scholar 

  37. Jackson, S.E., Moracci, M., elMarsy, N., Johnson, C. & Fersht, A.R. Effect of cavity-creating mutations in the hdrophobic core of chymotrypsin inhibitor 2. Biochemistry 32, 11259– 11269 (1993).

    Article  CAS  Google Scholar 

  38. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system. J. Mol. Graph. 6, 13– 27 (1988).

    Article  CAS  Google Scholar 

  39. Huang, C.C., Pettersen, E.F., Klein, T.E., Ferrin, T.E. & Langridge, R. Conic: a fast renderer for space-filling molecules with shadows. J. Mol. Graph. 9, 230– 236 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Eck for providing us with the atomic coordinates of src tyrosine kinase prior to submitting them in the Brookhaven protein data bank, Q. Yi for mass spectrometry analysis of all the SH3 mutants, J. Onuchic and members of the Baker group for useful comments on the manuscript, and L. Serrano and coworkers for sharing their manuscript on the spectrin folding transition state prior to publication. This work was supported by a grant from the Office of Naval Research and Young Investigator awards to D. B. from the NSF and the Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Riddle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grantcharova, V., Riddle, D., Santiago, J. et al. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nat Struct Mol Biol 5, 714–720 (1998). https://doi.org/10.1038/1412

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing