Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A residue-specific NMR view of the non-cooperative unfolding of a molten globule

Abstract

Molten globules are partially folded forms of proteins that are thought to be general intermediates in protein folding. Nonetheless, there is limited structural information about such species because they possess conformational heterogeneity and complex dynamical properties that lead to extreme line broadening in NMR spectra. Here we use a 2-D NMR approach that overcomes this difficulty by detecting the unfolding of individual residues in a molten globule in increasing concentrations of denaturant. The results show that the structure in the low pH form of α-lactalbumin (α-LA) is not formed cooperatively. Moreover, a core region remains collapsed under extremely denaturing conditions, even when the majority of the polypeptide chain is completely unfolded. Our results support a model for protein folding in which the core provides a template for correct assembly of the remainder of the structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  2. Ptitsyn, O.B. The molten globule state. in Protein Folding (ed. Creighton, T.E.) 243–300 (W.H. Freeman and Co., New York; 1992).

    Google Scholar 

  3. Dobson, C.M. Solid evidence for molten globules. Curr. Biol. 4, 636–640 (1994).

    Article  CAS  Google Scholar 

  4. Peng, Z-y. & Kim, P.S. A protein dissection study of a molten globule. Biochemistry 33, 2136–2141 (1994).

    Article  CAS  Google Scholar 

  5. Wu, L.C., Peng, Z-y. & Kim, P.S. Bipartite structure of the α-lactalbumin molten globule. Nature Struct. Biol. 2, 281–286 (1995).

    Article  CAS  Google Scholar 

  6. Hughson, F.M., Barrick, D. & Baldwin, R.L. Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry 30, 4113–4118 (1991).

    Article  CAS  Google Scholar 

  7. Lin, L., Pinker, R.J., Forde, K., Rose, G.D. & Kallenbach, N.R. Molten globular characteristics of the native state of apomyoglobin. Nature Struct. Biol. 1, 447–452 (1994).

    Article  CAS  Google Scholar 

  8. Kay, M.S. & Baldwin, R.L. Packing interactions in the apomyoglobin folding intermediate. Nature Struct. Biol. 3, 439–445 (1996).

    Article  CAS  Google Scholar 

  9. Kuwajima, K. The molten globule state of α-lactalbumin. The FASEB Journal 10, 102–109 (1996).

    Article  CAS  Google Scholar 

  10. Kay, L.E., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 1063–1065 (1992).

    Article  Google Scholar 

  11. Baum, J., Dobson, C.M., Evans, P.A. & Hanley, C. Characterization of a partly-folded protein by NMR methods: studies of the molten globule state of guinea pig α-lactalbumin. Biochemistry 28, 7–13 (1989).

    Article  CAS  Google Scholar 

  12. Wang, Y. & Shortle, D. The equilibrium folding pathway of staphylococcal nuclease: identification of the most stable chain-chain interactions by NMR and CD spectroscopy. Biochemistry 34, 15895–15905 (1995).

    Article  CAS  Google Scholar 

  13. Wang, Y., Alexandrescu, A.T. & Shortle, D. Initial studies of the equilibrium folding pathway of staphylococcal nuclease. Phil. Trans. R. Soc. tond. B 348, 27–34 (1995).

    Google Scholar 

  14. Eliezer, D. & Wright, P.E. Is apomyoglobin a molten globule? Structural characterization by NMR. J. Mol. Biol. 263, 531–538 (1996).

    Article  CAS  Google Scholar 

  15. Wishart, D.S., Sykes, B.D. & Richards, F.M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol. 222, 311–333 (1991).

    Article  CAS  Google Scholar 

  16. Fiebig, K.M., Schwalbe, H., Buck, M., Smith, L.J. & Dobson, C.M. Toward a description of the conformation of denatured states of proteins. Comparison of a random coil model with NMR measurements J. Phys. Chem. 100, 2661–2666 (1996).

    Article  CAS  Google Scholar 

  17. Wüthrich, K. NMR of Proteins and Nucleic Acids, John Wiley & Sons, New York (1986).

    Book  Google Scholar 

  18. Peng, Z-y, Wu, L.C. & Kim, P.S. Local structural preferences in the α-lactalbumin molten globule. Biochemistry 34, 3248–3252 (1995).

    Article  CAS  Google Scholar 

  19. Alexandrescu, A.T., Evans, P.A., Pitkeathly, M., Baum, J. & Dobson, C.M. Structure and dynamics of the acid-denatured molten globule state of α-lactalbumin: a two-dimensional NMR study. Biochemistry 32, 1707–1718 (1993).

    Article  CAS  Google Scholar 

  20. Chyan, C.L., Wormald, C., Dobson, C.M., Evans, P.A. & Baum, J. Structure and stability of the molten globule state of guinea-pig α-lactalbumin: a hydrogen exchange study. Biochemistry 32, 5681–5691 (1993).

    Article  CAS  Google Scholar 

  21. Schulman, B.A., Redfield, C., Peng, Z-y., Dobson, C.M. & Kim, P.S. Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human α-lactalbumin. J. Mol. Biol. 253, 651–657 (1995).

    Article  CAS  Google Scholar 

  22. Schulman, B.A. & Kim, P.S. Proline scanning mutagenesis of a molten globule reveals non-cooperative formation of protein's overall topology. Nature Struct. Biol. 3, 682–687 (1996).

    Article  CAS  Google Scholar 

  23. Morozova, L.A., Haynie, D.T., Arico-Muendel, C., Van Dael, H. & Dobson, C.M. Structural basis of the stability of a lysozyme molten globule. Nature Struct. Biol. 2, 871–875 (1995).

    Article  CAS  Google Scholar 

  24. Fontana, A., de Laureto, P. P., de Filippis, V., Scaramella, E. & Zambonin, M. Probing the partly folded states of proteins by limited proteolysis. Folding & Design 2, R17–R26 (1997).

    Article  CAS  Google Scholar 

  25. Uversy, V.N. & Ptitsyn, O.B. All-or-none solvent induced transitions between native, molten globule and unfolded states in globular proteins. Folding & Design 1, 117–122 (1996).

    Article  Google Scholar 

  26. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  27. Loh, S.N., Kay, M.S. & Baldwin, R.L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc. Natal. Acad. Sci. USA 92, 5446–5450 (1995)

    Article  CAS  Google Scholar 

  28. Kay, M.S. & Baldwin, R.L. Packing interactions in the apomyoglobin folding intermediate. Nature Struct. Biol. 3, 439–445 (1996).

    Article  CAS  Google Scholar 

  29. Jamin, M. & Baldwin, R.L. Refolding and unfolding kinetics of the equilibrium folding intermediate of apomyoglobin. Nature Struct. Biol. 3, 613–618 (1996).

    Article  CAS  Google Scholar 

  30. Shimizu, A., Ikeguci, M. & Sugai, S. Unfolding of the molten globule state of α-lactalbumin studied by 1H NMR. Biochemistry 32, 13198–13203 (1993).

    Article  CAS  Google Scholar 

  31. Xie, D., Bhakuni, V. & Freire, E. Calorimetric determination of the energetics of the molten globule intermediate in protein folding: apo-α-lactalbumin. Biochemistry 30, 10673–10678 (1991).

    Article  CAS  Google Scholar 

  32. Yutani, K., Ogasahar, K. & Kuwajima, K. Absence of the thermal transition in apo-α-lactalbumin in the molten globule state. A study by differential scanning microcalorimetry. J. Mol. Biol. 228, 347–350 (1992).

    Article  CAS  Google Scholar 

  33. Jeng, M.-F. & Englander, S.W. Stable submolecular folding units in a non-compact formofcytochromec. J.Mol.Biol. 221, 1045–1061 (1991).

    Article  CAS  Google Scholar 

  34. Balbach, J., Forge, V., van Nuland, N.A.J., Winder, S., Hore, P.J. & Dobson, C.M. Following protein folding in real time using NMR spectroscopy. Nature Struct. Biol. 2, 865–870 (1995).

    Article  CAS  Google Scholar 

  35. Arai, M. & Kuwajima, K. Rapid formation of a molten globule intermediate in refolding of α-lactalbumin. Folding and Design 1, 275–287 (1996).

    Article  CAS  Google Scholar 

  36. Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. & Clore, G.M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn multiple quantum coherence and nuclear Overhauser multiple quantum coherence spectroscopy: application to interleukin-1β. Biochemistry 28, 6150–6156 (1989).

    Article  CAS  Google Scholar 

  37. Frenkiel, T., Bauer, C., Carr, M.D., Birdsall, B. & Feeney, J. HMQC-NOESY-HMQC, a three-dimensional NMR experiment which allows detection of nuclear Overhauser effects between protons with overlapping signals. J. Magn. Reson. 90, 420–425 (1990).

    CAS  Google Scholar 

  38. Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T. & Gronenborn, A.M. Complete resonance assignment for the polypeptide backbone of interleukin 1β using three-dimensional heteronuclear NMR spectroscopy. Biochemistry 29, 3542–3556 (1990).

    Article  CAS  Google Scholar 

  39. Pace, C.N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Meth. Enz. 131, 266–280 (1986).

    CAS  Google Scholar 

  40. Acharya, K.R., Ren, J.S., Stuart, D.I., Phillips, D.C. & Fenna, R.E. Crystal structure of human α-lactalbumin at 1. 7 Å resolution. J. Mol. Biol. 221, 571–581 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulman, B., Kim, P., Dobson, C. et al. A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Mol Biol 4, 630–634 (1997). https://doi.org/10.1038/nsb0897-630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0897-630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing