Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

2.2 Å structure of oxy-peroxidase as a model for the transient enzyme: peroxide complex

Abstract

The Fe+3-OOH complex of peroxidases has a very short half life, and its structure cannot be determined by conventional methods. The Fe+2-O2 complex provides a useful structural model for this intermediate, as it differs by only one electron and one proton from the transient Fe+3-OOH complex. We therefore determined the crystal structure of the Fe+2-O2 complex formed by a yeast cytochrome c peroxidase mutant with Trp 191 replaced by Phe. The refined structure shows that dioxygen can form a hydrogen bond with the conserved distal His residue, but not with the conserved distal Arg residue. When the transient Fe+3-OOH complex is modelled in a similar orientation, the active site of peroxidase appears to be optimized for catalysing proton transfer between the vicinal oxygen atoms of the peroxy-anion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jones, P., & Dunford, H.B. On the mechanism of compound I formation from peroxidases and catalases J. theor. Biol. 69, 457–470 (1977).

    Article  CAS  Google Scholar 

  2. Mauro, J.M. et al. Trp-191 Phe: A proximal-side mutant of yeast CCP which strongly affects the kinetics of ferrocytochrome c oxidation Biochemistry 27, 6243–6256 (1988).

    Article  CAS  Google Scholar 

  3. Welinder, K.G. & Mazza, G. Amino acid sequences of heme-linked, histidine containing peptides of five peroxidases from horseradish and turnip Eur J. Biol. 73, 353–358 (1977).

    Article  CAS  Google Scholar 

  4. Edwards, S.L., Raag, R., Wariishi, H., Gold, M.H. & Poulos, T.L. Crystal structure of lignin peroxidase Proc. natn. Acad. Sci. U.S.A. 90, 750–754 (1993).

    Article  CAS  Google Scholar 

  5. Kunishima, N. et al. Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 Å resolution J. molec. Biol. 235, 331–344 (1994).

    Article  CAS  Google Scholar 

  6. Zeng, J. & Fenna, R.E. X-ray crystal structure of canine myeloperoxidase at 3.0 Å resolution J. molec. Biol. 226, 185–207 (1992).

    Article  CAS  Google Scholar 

  7. Finzel, B.C., Poulos, T.L. & Kraut, J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7 Å resolution J. biol. Chem. 259, 13027–13036 (1984).

    CAS  Google Scholar 

  8. Erman, J.E., Vitello, L.B., Miller, M.A. & Kraut, J. Active site mutations in cytochrome c peroxidase: a critical role for His 52 in the reaction with peroxide J. Am. chem. Soc. 114, 6592–6593 (1992).

    Article  CAS  Google Scholar 

  9. Erman, J.E. et al. Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase compound I Biochemistry 37, 9798–9806 (1993).

    Article  Google Scholar 

  10. Vitello, L.B., Huang, M. & Erman, J.E. pH-dependent spectral and kinetic properties of cytochrome c peroxidase: comparison of freshly isolated and stored enzyme Biochemistry 29, 4232–4238 (1990).

    Article  Google Scholar 

  11. Vitello, L.B., Erman, J.E., Miller, M.A., Wang, J. & Kraut, J. The effect of arginine 48 replacement on the reaction of cytochrome c peroxidase and hydrogen peroxide Biochemistry 37, 9807–9818 (1993).

    Article  Google Scholar 

  12. Vitello, L.B., Erman, J.E., Miller, M.A., Mauro, J.M. & Kraut, J. Effect of Asp 235 Asn substitution on the absorption spectrum and hydrogen peroxide reactivity of cytochrome c peroxidase Biochemistry 31, 11524–11535 (1992).

    Article  CAS  Google Scholar 

  13. Edwards, S.L., Xuong, N.-h., Hamlin, R.C. & Kraut, J. Crystal structure of cytochrome c peroxidase compound I Biochemistry 26, 1503–1511 (1987).

    Article  CAS  Google Scholar 

  14. Fülöp, V. et al. Laue diffraction study on the structure of cytochrome c peroxidase compound I Structure 2, 201–208 (1994).

    Article  Google Scholar 

  15. Vitello, L.B., Erman, J.E., Mauro, J.M. & Kraut, J. Characterization of the hydrogen peroxide enzyme reaction for two CcP mutants Biochem. biophys. Acta 1038, 90–97 (1990).

    CAS  PubMed  Google Scholar 

  16. Chance, B., DeVault, D., Legallais, V., Mela, L. & Yonetani, T. (1967) in Fast reactions and primary processes in chemical kinetics (Claesson, S., ed.) pp. 437–464, Interscience, New York.

    Google Scholar 

  17. Balny, C., Travers, F., Barman, T. & Douzou, P. Thermodynamics of the two-step formation of horseradish peroxidase compound I Eur. biophys. J. 14, 375–387 (1987).

    Article  CAS  Google Scholar 

  18. Baek, H.K. & Van Wart, H.E. Elementary steps in the formation of horseradish peroxidase compound I: direct observation of compound 0, a new intermediate with a hyperporphyrin spectrum Biochemistry 28, 5714–5719 (1989).

    Article  CAS  Google Scholar 

  19. Poulos, T.L. Kraut, J. The stereochemistry of peroxidase catalysis J biol. Chem. 255, 8199–8205 (1980).

    CAS  PubMed  Google Scholar 

  20. Collins, J.R., Du, P. & Loew, G.H. Molecular dynamics simulations of the resting and hydrogen peroxide-bound states of cytochrome c peroxidase Biochemistry 31, 11166–11171 (1992).

    Article  CAS  Google Scholar 

  21. Hoffman, R., Chen, M.M.-L. & Thorn, D. Qualitative discussion of alternative coordination modes of diatomic ligands in transition metal complexes Inorganic Chemistry 16, 503–511 (1978).

    Article  Google Scholar 

  22. Mylrajan, M. et al. Resonance raman spectroscopic characterization of compound III of lignin peroxidase Biochemistry 29, 9617–9623 (1990).

    Article  CAS  Google Scholar 

  23. Van Wart, H.E. & Zimmer, J. Resonance raman evidence for the activation of dioxygen in horseradish peroxidase oxyperoxidase J. biol. Chem. 260, 8372–8377 (1985).

    CAS  PubMed  Google Scholar 

  24. Edwards, S.L. & Poulos, T.L. Ligand binding and structural perturbations of cytochrome c peroxidase — a crystallographic study J. biol. Chem. 265, 2588–2595 (1990).

    CAS  PubMed  Google Scholar 

  25. Edwards, S.L., Poulos, T.L. & Kraut, J. Crystal structure of fluoride-inhibited cytochrome c peroxidase J. biol. Chem. 259, 12984–12988 (1984).

    CAS  PubMed  Google Scholar 

  26. Miller, M.A., Bandyopadhyay, D., Mauro, J.M., Traylor, T.G. & Kraut, J. Reaction of ferrous cytochrome c peroxidase with dioxygen: site-directed mutagenesis provides evidence for rapid reduction of dioxygen by intramolecular electron transfer from the compound I radical site Biochemistry 31, 2789–2797 (1992).

    Article  CAS  Google Scholar 

  27. Smulevich, G. et al. Heme pocket interactions in cytochrome c peroxidase studied by site-directed mutagenesis and resonance raman spectroscopy, Biochemistry 27, 5477–5485 (1988).

    Article  CAS  Google Scholar 

  28. Shaanan, B. Structure of human oxyhaemoglobin at Å resolution J. molec. Biol. 171, 31–59 (1983).

    Article  CAS  Google Scholar 

  29. Phillips, S.E.V. & Schoenborn, B.P. Neutron diffraction revealsoxygen-histidine hydrogen bond in oxymyoglobin Nature 292, 81–82 (1981).

    Article  CAS  Google Scholar 

  30. Wittenberg, J.B. et al. Studies on the equilibria and kinetics ofthe reactions of peroxidase with ligands J. boil. Chem. 242, 626–634 (1967).

    CAS  Google Scholar 

  31. Millis, C.D., Cai, D.Y., Stankovich, M.T., & Tien, M. Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus phanaerochaete chrysosporium Biochemistry 28, 8484–8491 (1989).

    Article  CAS  Google Scholar 

  32. Tajima, G. & Shikama, K. Autoxidation of oxymyoglobin J. biol. Chem. 262, 12603–12606 (1987).

    CAS  PubMed  Google Scholar 

  33. Wallace, W.J., Houtchens, R.A., Maxwell, J.C. & Caughey, W.S. Mechanism of auto oxidation for hemoglobins and myoglobins J. biol. Chem. 257, 4966–4977 (1982).

    CAS  PubMed  Google Scholar 

  34. Jongeward, K.A., Magde, D., Taube, D.J., Marsters, J.C., Traylor, T.G. & Sharma, V.S. Picosecond and nanosecond geminate recombination of myoglobin with CO, O2, NO, and isocyanides J. Am. chem. Soc. 110, 380–387 (1988).

    Article  CAS  Google Scholar 

  35. Abrahams, S.C., Collins, R.L. & Lipscomb, W.N. The crystal structure of hydrogen peroxide Acta Cryst. 4, 15–19 (1951).

    Article  CAS  Google Scholar 

  36. Dasgupta, S., Rousseau, D.L., Anni, H., & Yonetani, T. Structural characterizations of cytochrome c peroxidase by resonance raman scattering J. biol. Chem. 264, 654–662 (1989).

    CAS  PubMed  Google Scholar 

  37. Goodin, D.B., Davidson, M.G., Roe, J.A., Mauk, A.G. & Smith, M. Amino acid substitutions at Trp 51 of cytochrome c peroxidase: effects on coordination, specific preference for cytochrome c, and electron transfer Biochemistry 30, 4953–4962 (1991).

    Article  CAS  Google Scholar 

  38. Wang, J. et al. X-ray structures of recombinant yeast cytochrome c peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis Biochemistry 29, 7160–7173 (1990).

    Article  CAS  Google Scholar 

  39. Cork, C., Fehr, D., Hamlin, R., Vernon, W. & Xuong, N.-h A multiwire proportional chamber as an area detector for protein crystallography J. appl. Cryst. 7, 319–323 (1973).

    Article  Google Scholar 

  40. Xuong, N.-h, Nielsen, C., Hamlin, R. & Anderson, D. Strategy for data collection from protein crystals using a multiwire counter area detector diffractometer J. appl. Cryst. 18, 342–350 (1985).

    Article  Google Scholar 

  41. Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. An efficient general-purpose least-squares refinement program for macromolecular structures Acta Cryst. 43, 489–501 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, M., Shaw, A. & Kraut, J. 2.2 Å structure of oxy-peroxidase as a model for the transient enzyme: peroxide complex. Nat Struct Mol Biol 1, 524–531 (1994). https://doi.org/10.1038/nsb0894-524

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0894-524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing