Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Architecture of nonspecific protein–DNA interactions in the Sso7d–DNA complex

Abstract

Many biochemical processes, including DNA packing, maintenance and control, rely on non-sequence specific protein–DNA interactions. Nonspecific DNA-binding proteins have evolved to tolerate a wide range of DNA sequences, yet bind with a respectable affinity. The nonspecific binding requirement is in contrast to that imposed on, for example, transcription factors and implies a different structural basis for the biomolecular recognition process. To address this issue, and the mechanism for archaeal DNA packing, we determined the structure of the Sso7d protein from Sulfolobus solfataricus in complex with DNA. Sso7d binds DNA by placing a triple-stranded β-sheet across the DNA minor groove. The protein is anchored in this position by the insertion of hydrogen bond-donating side chains into the groove and additionally stabilized by electrostatic and non-polar interactions with the DNA backbone. This structure explains how strong binding can be achieved independent of DNA sequence. Sso7d binding also distorts the DNA conformation and introduces significant unwinding of the helix. This effect suggests a mechanism for DNA packing in Sulfolobus based on negative DNA supercoiling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and secondary structure elements of the Sso7d protein from Sulfolobus solfataricus.
Figure 2: Scatchard plot based on a titration of GC3 DNA on Sso7d.
Figure 3
Figure 4: Illustration of the GC3 DNA sequence and observed intermolecular Sso7d–DNA NOE connectivities.
Figure 5: A set of calculated (SA) structures of a monomeric part of the Sso7d–DNA complex superimposed by the backbone atoms of the protein.
Figure 6: Topology of the dimeric Sso7d–DNA complex.
Figure 7: View of protein interactions in the DNA minor groove.
Figure 8: Comparison of the DNA structure in the Sso7d–DNA complex with that of standard B-form DNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Travers, A.A., Ner, S.S. & Churchill, M.E.A. DNA chaperones: A solution to a persistence problem. Cell 77, 167–69 ( 1994).

    Article  CAS  Google Scholar 

  2. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251 –260 (1997).

    Article  CAS  Google Scholar 

  3. Starich, M.R., Sandman, K., Reeve, J.N. & Summers, M.F. NMR structure of HMfB from the hyperthermophile Methanothermus fervidus confirms that this archaeal protein is a histone. J. Mol. Biol. 25, 187–203 (1996).

    Article  Google Scholar 

  4. Shioda, M.B., Sugimori, K., Shiroya, T. & Takayanagi, S. Nucleosomelike structures associated with chromosomes of the archaebacterium Halobacterium salinarium. J. Bacteriol. 171, 4514– 4517 (1989).

    Article  CAS  Google Scholar 

  5. Bohrmann, B. et al. Localization of histone-like proteins in thermophilic archaea by immunogold microscopy. J. Struct. Biol. 112, 70– 78 (1994).

    Article  CAS  Google Scholar 

  6. Thomm, M., Stetter, K.O. & Zillig, W. Histone-like proteins in eu- and archaebacteria. Zentralbl. Bakeriol. Mikrobiol. Hyg., I. Abt. Orig. C 3, 128– 139 (1982).

    CAS  Google Scholar 

  7. Dijk, J. & Reinhardt, R. The structure of DNA-binding proteins from eu and archaebacteria. in Bacterial Chromatin (eds Gualerzi, C.O. & Pon, C.L.) 185–218 (Springer-Verlag, Berlin, 1986).

    Chapter  Google Scholar 

  8. Choli, T., Henning, P., Wittmann-Liebold, B. & Reinhardt, R. Isolation, characterization, and microsequence analysis of a small basic methylated DNA-binding protein from the archaebacterium Sulfolobus solfataricus. Biochim. Biophys. Acta 950, 193– 203 (1988).

    Article  CAS  Google Scholar 

  9. Baumann, H., Knapp, S., Lundbäck, T., Ladenstein, R. & Härd, T. Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nature Struct. Biol. 1, 808–819 (1994).

    Article  CAS  Google Scholar 

  10. Lundbäck, T. & Härd, T. Salt dependence of the free energy, enthalpy and entropy of nonsequence specific DNA binding. J. Phys. Chem. 100, 17690–17695 ( 1996).

    Article  Google Scholar 

  11. McAfee, J.G., Edmondson, S.P., Zegar, I. & Shriver, J.W. Equilibrium DNA Binding of Sac7d Protein from the Hyperthermophile Sulfolobus acidocaldarius : fluorescence and circular dichroism studies. Biochemistry 35, 4034–4045 ( 1996).

    Article  CAS  Google Scholar 

  12. Lundbäck, T., Hansson, H., Knapp, S., Ladenstein, R. & Härd, T. Thermodynamic characterization of nonsequence specific DNA-binding by the Sso7d protein from Sulfolobus solfataricus. J. Mol. Biol. 276, 775–786 (1998).

    Article  Google Scholar 

  13. Brunger, A. X-PLOR version 3.1: A system for X-ray crystallography and NMR, (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  14. Robinson, H. et al. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392, 202–205 ( 1998).

    Article  CAS  Google Scholar 

  15. Murzin, A.G. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 12, 861– 867 (1993).

    Article  CAS  Google Scholar 

  16. Baumann, H., Knapp, S., Karshikoff, A., Ladenstein, R. & Härd, T. DNA-binding surface of the Sso7d protein from Sulfolobus solfataricus. J. Mol. Biol. 247, 840 –846 (1995).

    Article  CAS  Google Scholar 

  17. Guagliardi, A., Cerchia, L., Camardella, L., Rossi, M. & Bartolucci, S. DBF (disulfide bond-forming) enzyme from the hyperthermophilic archaebacterium Sulfolobus solfataricus behaves like a molecular chaperone. Biocatalysis 11, 181–190 (1994).

    Article  CAS  Google Scholar 

  18. Saraste, M., Sibbald, P.R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430– 434 (1990).

    Article  Google Scholar 

  19. Berglund, H., Baumann, H., Knapp, S., Ladenstein, R. & Härd, T. Flexibility of an arginine side chain at a DNA-protein interface. J. Am. Chem. Soc. 117, 12883– 12884 (1995).

    Article  CAS  Google Scholar 

  20. Knapp, S. et al. Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus. J. Mol. Biol. 264, 1132–1144 (1997).

    Article  Google Scholar 

  21. Rhodes, D. & Klug, A. Helical periodicity of DNA determined by enzyme digestion. Nature 286, 573– 578 (1980).

    Article  CAS  Google Scholar 

  22. Depew, R.E. & Wang, J.C. Conformational fluctuations of DNA helix. Proc. Natl. Acad. Sci. USA 72, 4275 –4279 (1975).

    Article  CAS  Google Scholar 

  23. López-Garcia, P., Knapp, S., Ladenstein, R. & Forterre, P. In vitro DNA binding of the archaeal protein Sso7d induces negative supercoiling at temperatures typical for thermophilic growth. Nucleic Acids. Res., in the press (1998).

  24. Macura, A. & Ernst, R.R. Elucidation of crossrelaxation in liquids by 2D NMR spectroscopy. Mol. Phys. 41, 95–117 (1980).

    Article  CAS  Google Scholar 

  25. Kay, L.E. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog. Biophys. Mol. Biol. 63, 277–299 (1995).

    Article  CAS  Google Scholar 

  26. Slijper, M., Kaptein, R. & Boelens, R. Simultaneous 13C and 15N isotope editing of biomolecular complexes. Application to a mutant lac repressor headpiece DNA complex. J. Magn. Reson. B 111, 199– 203 (1996).

    Article  CAS  Google Scholar 

  27. Wuthrich, K. NMR of protein and nucleic acids. (John Wiley & Sons, New York; 1986).

    Book  Google Scholar 

  28. Vuister, G.W. & Bax, A. Quantitative J correlation: a new approach for measuring homonuclear threebond J(HNHα) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115 , 7772–7777 (1993).

    Article  CAS  Google Scholar 

  29. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. An alternative 3D NMR technique for correlating backbone 15N with side chain Hβ resonances in larger proteins. J. Magn. Reson. 95, 636–641 (1991).

    CAS  Google Scholar 

  30. Vuister, G.W. & Bax, A. Measurement of two- and three-bond proton to methyl-carbon J couplings in proteins uniformly enriched with 13C. J. Magn. Reson. B 102, 228– 231 (1993).

    Article  CAS  Google Scholar 

  31. Kim, S.-G., Lin, L.-J. & Read, B.R. Determination of nucleic acid backbone conformation by 1H NMR . Biochemistry 31, 3564– 3574 (1992).

    Article  CAS  Google Scholar 

  32. Omichinski, J.G., Pedone, P.V., Felsenfeld, G., Gronenborn, A.M. & Clore, G.M. The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nature Struct. Biol. 4, 122–132 (1997).

    Article  CAS  Google Scholar 

  33. Nilges, M. A calculations strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17, 297–309 (1993).

    Article  CAS  Google Scholar 

  34. Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  35. Lavery, R. & Skelnar, H. Defining the structure of irregular nucleid acids: conventions and principles. J. Biomol. Struct. Dyn. 6, 655–667 ( 1989).

    Article  CAS  Google Scholar 

  36. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures . J. Appl. Crystallogr. 24, 946– 950 (1991).

    Article  Google Scholar 

  37. Bacon, D.J. & Anderson, W.F. A fast algorithm for rendering space-filling molecule pictures. Mol. Graphics 6, 219–220 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Natural Sciences Research Council (NFR), the Magn. Bervall Foundation and by the EC project Biotechnology of Extremophiles. We thank Mats Wikström and Toshi Nishida at Pharmacia & Upjohn for providing measurement time on an 800 MHz NMR spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torleif Härd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agback, P., Baumann, H., Knapp, S. et al. Architecture of nonspecific protein–DNA interactions in the Sso7d–DNA complex. Nat Struct Mol Biol 5, 579–584 (1998). https://doi.org/10.1038/836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing