Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

2.1 Å structure of Serratia endonuclease suggests a mechanism for binding to double-stranded DNA

Abstract

The crystal structure of Serratia endonuclease has been solved to 2.1 Å by multiple isomorphous replacement. This magnesium-dependent enzyme is equally active against single- and double-stranded DNA, as well as RNA, without any apparent base preference. The Serratia endonuclease fold is distinct from that of other nucleases that have been solved by X-ray diffraction. The refined structure consists of a central layer containing six antiparallel β-strands which is flanked on one side by a helical domain and on the opposite side by one dominant helix and a very long coiled loop. Electrostatic calculations reveal a strongly polarized molecular surface and suggest that a cleft between this long helix and loop, near His 89, may contain the active site of the enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Saito, H., Elting, L., Bodey, G.P. & Berkey, P. Serratia bacteremia: review of 118 cases. Rev. infect. Dis. 11, 912–920 (1989).

    Article  CAS  Google Scholar 

  2. Acar, J.F. Serratia marcescens infections. Infect. Control. 7, 273–278 (1986).

    Article  CAS  Google Scholar 

  3. Ball, T.K., Saurugger, P.N. & Benedik, M.J. The extracellular nuclease gene of Serratia marcescens and its secretion from Escherichia coli. Gene 57, 183–192 (1987).

    Article  CAS  Google Scholar 

  4. Molla, A., Matsumura, Y., Yamamoto, T., Okamura, R. & Maeda, H. Pathogenic capacity of proteases from Serratia marcescens and Pseudomonas aeruginosa and their suppression by chicken egg white ovomacroglobulin. Infect. Immun. 55, 2509–2517 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Heller, K. Lipolytic activity copurified with the outer membrane of Serratia marcescens. J. Bact. 140, 1120–1122 (1979).

    CAS  PubMed  Google Scholar 

  6. Givskov, M., Olsen, L. & Molin, S. Cloning and expression in Escherichia coil of the gene for extracellular phospholipase A1 from Serratia liquefaciens. J. Bact. 170, 5855–5862 (1988).

    Article  CAS  Google Scholar 

  7. Jones, J.D.G., Grady, K.L., Suslow, T.V. & Bedbrook, J.R. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J. 5, 496–473 (1986).

    Google Scholar 

  8. Muro-Pastor, A.M., Flores, E., Herrero, A. & Wolk, C.P. Identification, genetic analysis and characterization of a sugar-nonspecific nuclease from the cyanobacterium Anabaena sp. PCC 7120. Molec. Microbiol. 6, 3021–3030 (1992).

    Article  CAS  Google Scholar 

  9. Eaves, G.N. & Jeffries, C.D. Isolation and properties of an exocellular nuclease of Serratia marcescens. J. Bact. 85, 273–278 (1963).

    CAS  PubMed  Google Scholar 

  10. Nestle, M. & Roberts, W.K. An extracellular nuclease from Serratia marcescens: II. specificity of the enzyme. J. biol. Chem. 244, 5219–5225 (1969).

    CAS  PubMed  Google Scholar 

  11. Weston, S.A., Lahm, A. & Suck, D. X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 Å resolution. J. molec. Biol. 226, 1237–1256 (1992).

    Article  CAS  Google Scholar 

  12. Miller, M.D., Benedik, M.J., Sullivan, M.C., Shipley, N.S. & Krause, K.L. Crystallization and preliminary crystallographic analysis of a novel nuclease from Serratia Marcesens. J. molec. Biol. 222, 27–30 (1991).

    Article  CAS  Google Scholar 

  13. Filimonova, M.N., Balaban, N.P., Sharipova, F.R. & Leshchinskaya, I.B. Production of Serratia marcescens nuclease in a homogeneous state and study of the physicochemical properties of the enzyme. Biokhimiya 45, 2096–2103 (1980).

    CAS  Google Scholar 

  14. Product Specifications for Benzonase, The first industrial endonuclease. (Benzon Pharma A/S, Helseholmen 1, P.O. Box 1185, DK-2650 Hvidovre Denmark, 1993).

  15. Kurinenko, B.M., Belyaeva, M.I., Cherepneva, I.E. & Viesture, Z.A. The antitumor effect of Serratia marcescens nuclease bound covalently to soluble dextran. Vopr. Onkol. 23, 94–98 (1977).

    CAS  PubMed  Google Scholar 

  16. Panfilova, Z.I., Batalina, T.A. & Salganik, R.I. Summaries of Reports at the Second All-Union Conference on the Enzymes of Microorganisms 1–67 (Moscow, 1978).

    Google Scholar 

  17. Suck, D. Nuclease structure and catalytic function. Curr. Opin. struct. Biol. 2, 84–92 (1992).

    Article  CAS  Google Scholar 

  18. Tan, R.C., Truong, T.N., McCammon, J.A. & Sussman, J.L. Acetylcholinesterase: electrostatic steering increases the rate of ligand binding. Biochemistry 32, 401–403 (1993).

    Article  CAS  Google Scholar 

  19. Sines, J.J., Allison, S.A. & McCammon, J.A. Point charge distributions and electrostatic steering in enzyme/substrate encounter: Brownian dynamics of modified copper/zinc superoxide dismutases. Biochemistry 29, 9403–9412 (1990).

    Article  CAS  Google Scholar 

  20. Knowles, J.R. Enzyme catalysis: not different, just better. Nature. 350, 121–124 (1991).

    Article  CAS  Google Scholar 

  21. Brändén, C. Relation between structure and function of α/β proteins. Q. Rev. Biophys. 13, 317–338. (1980).

    Article  Google Scholar 

  22. Suck, D. & Oefner, C. Structure of DNase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA. Nature 321, 620–625 (1986).

    Article  CAS  Google Scholar 

  23. Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. appl. Cryst. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  24. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. appl. Cryst. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  25. Steigemann, W. PROTEIN: A program system for the crystal structure analysis of proteins. (Max-Plank Institute for Biochemistry, Munich, Germany, 1992).

    Google Scholar 

  26. Jones, T.A. A graphics model building and refinement system for macromolecules. J. appl. Cryst. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  27. Brünger, A.T. X-PLOR version 3.1 A System for X-ray Crystallography and NMR 1–382 (Yale University Press, New Haven, 1992).

    Google Scholar 

  28. Hendrickson, W.A. Stereochemically restrained refinement of macromolecular structures. Meth. Enzym. 115, 252–270, 1985.

    Article  CAS  Google Scholar 

  29. Nicholls, A. & Honig, B. GRASP: Graphical Representation and Analysis of Surface Properties. (Columbia University, New York, 1992).

    Google Scholar 

  30. Davis, M.E., Madura, J.D., Luty, B.A. & McCammon, J.A. Electrostatics and diffusion of molecules in solution: simulations with the University of Houston brownian dynamics program. Comput. Phys. Commun. 62, 187–197 (1991).

    Article  CAS  Google Scholar 

  31. QUANTA, version 3.3 (Molecular Simulations Inc., Waltham, MA, 1992)

  32. Carson, M. RIBBONS 2.0 J. appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  33. Jones, T.A., Zou, J.-Y. & Cowan, S.W. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, M., Tanner, J., Alpaugh, M. et al. 2.1 Å structure of Serratia endonuclease suggests a mechanism for binding to double-stranded DNA. Nat Struct Mol Biol 1, 461–468 (1994). https://doi.org/10.1038/nsb0794-461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0794-461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing