Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simulations of the dynamics at an RNA–protein interface

Abstract

Molecular dynamics simulations of the RNA-binding domain of the U1A spliceosomal protein in complex with its cognate RNA hairpin, performed at low and high ionic strength in aqueous solution, suggest a pathway for complex dissociation. First, cations condense around the RNA and compete with the protein for binding sites. Then solvated ions specifically destabilize residues at the RNA–protein interface. For a discrete cluster of residues at the complex interface, the simulations reveal an increased deviation from the crystal structure at high salt concentrations while the remaining protein scaffold is stabilized under these conditions. The microscopic picture of salt influence on the complex suggests guidelines for rational design of interface inhibitors targeted at RNA–protein complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The U1A protein/RNA/solvent system used in molecular dynamics (MD) simulations of an in silico salt-jump experiment.
Figure 2: Stereo view of high-occupancy sites for Na+ ions (blue surface), observed during an MD simulation of the U1A–RNA complex at 1 M NaCl concentration.
Figure 3: Dynamic flexibility of the U1A protein and RNA hairpin components of the complex.
Figure 4: Structural stability of the U1A–RNA complex during the MD simulations.
Figure 5: Microscopic effects of 1.0 M NaCl on protein–RNA complex structure and solvation during the MD simulations.

Similar content being viewed by others

References

  1. Nagai, K. & Mattaj, I.W. RNA–protein interactions. (IRL Press, Oxford; 1994).

    Google Scholar 

  2. Anderson, C.F. & Record, M.T. Annu. Rev. Phys. Chem. 46, 657–700 (1995).

    Article  CAS  Google Scholar 

  3. Record, M.T., Zhang, W. & Anderson, C.F. Adv. Prot. Chem. 51, 281– 353 (1998).

    CAS  Google Scholar 

  4. Steitz, J.A., Black, D.L., Gerke, V., Parker, K.A., Krämer, A. et al. In Structure and function of major and minor small nuclear ribonucleoprotein particles (ed. Birnstiel, M.L.) 115–154 (Springer-Verlag, New York; 1988).

    Book  Google Scholar 

  5. Nagai, K., Oubridge, C., Ito, N., Avis, J. & Evans, P.R. Trends Biochem. Sci. 20, 235–240 (1995).

    Article  CAS  Google Scholar 

  6. Scherly, D., Boelens, W., Van Venrooij, W.J., Dathan, N.A., Hamm, J. et al. EMBO J. 8, 4163–4170 (1989).

    Article  CAS  Google Scholar 

  7. Hall, K.B. & Stump, W.T. Nucleic Acids Res. 20, 4283–4290 (1992).

    Article  CAS  Google Scholar 

  8. Oubridge, C., Ito, N., Evans, P.R., Teo, C.-H. & Nagai, K. Nature 372, 432– 438 (1994).

    Article  CAS  Google Scholar 

  9. Manning, G.S. J. Chem. Phys. 51, 924–933 (1969).

    Article  CAS  Google Scholar 

  10. Braunlin, W.H. Adv. Biophys. Chem. 15, 89–139 (1995).

    Google Scholar 

  11. Nagai, K., Oubridge, C., Jessen, T.H., Li, J. & Evans, P.R. Nature 348, 515–520 (1990).

    Article  CAS  Google Scholar 

  12. Allain, F.H.-T., Gubser, C.C., Howe, P.W.A., Nagai, K., Neuhaus, D. et al. Nature 380, 646–650 (1996).

    Article  CAS  Google Scholar 

  13. van Gelder, C.W.G., Gunderson, S.I., Jansen, E.J.R., Boelens, W.C., Polycarpou-Schwarz, M. et al. EMBO J. 12, 5191–5200 (1993).

    Article  CAS  Google Scholar 

  14. Ibragimova, G.T. & Wade, R.C. Biophys. J. 74, 2906–2911 (1998).

    Article  CAS  Google Scholar 

  15. Pearson, N.D. & Prescott, C.D. Chem. Biol. 4, 409–414 (1997).

    Article  CAS  Google Scholar 

  16. Hermann, T. & Westhof, E. Curr. Opin. Biotechnol. 9, 66–73 (1998).

    Article  CAS  Google Scholar 

  17. Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E. et al. AMBER 4.1 (San Francisco, California; 1994).

    Google Scholar 

  18. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M. et al. J. Am. Chem. Soc. 117, 5179– 5197 (1995).

    Article  CAS  Google Scholar 

  19. Ryckaert, J.P., Ciccotti, G. & Berendsen, H.J.C. J. Comput. Phys. 23, 327– 336 (1977).

    Article  CAS  Google Scholar 

  20. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A. & Haak, J.R. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  21. Darden, T.A., York, D. & Pedersen, L.G. J. Chem. Phys. 98, 10089– 10092 (1993).

    Article  CAS  Google Scholar 

  22. Berendsen, H.J.C., Grigera, J.R. & Straatsma, T.P. J. Phys. Chem. 97, 6269– 6271 (1987).

    Article  Google Scholar 

  23. Auffinger, P. & Beveridge, D.L. Chem. Phys. Lett. 234, 413–415 (1995).

    Article  CAS  Google Scholar 

  24. Dang, L.X., Pettitt, B.M. & Rossky, P.J. J. Chem. Phys. 96, 4046– 4047 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.H. was supported by an EMBO long-term fellowship and a DFG grant. E.W. thanks the Institut Universitaire de France for supporting grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Westhof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermann, T., Westhof, E. Simulations of the dynamics at an RNA–protein interface. Nat Struct Mol Biol 6, 540–544 (1999). https://doi.org/10.1038/9310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing