Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nature of the initial step in the conformational folding of disulphide-intact ribonuclease A

Abstract

Here we investigate conformational folding reaction of disulphide-intact ribonuclease A in the absence of the complicating effects due to non-native interactions (such as cis/trans proline isomerization) in the unfolded state. The conformational folding process is found to be intrinsically very fast occurring on the milliseconds time scale. The kinetic data indicate that the conformational folding of ribonuclease A proceeds through the formation of a hydrophobically collapsed intermediate with properties similar to those of equilibrium molten-globules. Furthermore, the data suggest that the rate-limiting transition states on the unfolding and refolding pathways are substantially different with the refolding transition state having non-native-like properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. A. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  2. Nail, B.T. Proline isomerization as a rate-limiting step. In Mechanisms of protein folding (ed. Pain, R. H.) 80–103 (Oxford University Press, New York; 1994).

    Google Scholar 

  3. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. The barriers in protein folding. Nature struct. Biol. 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  4. Matheson, R.R. Jr. & Scheraga, H.A. A method for predicting nucleation sites for protein folding based on hydrophobic contacts. Macromolecules 11, 819–829 (1978).

    Article  CAS  Google Scholar 

  5. Baldwin, R.L. How does protein folding get started? Trends biochem. Sci. 14, 291–294 (1989).

    Article  CAS  Google Scholar 

  6. Dill, K.A., Fiebig, K.M. & Chan, H.S. Cooperativity in protein-folding kinetics. Proc. natn. Acad. Sci. U.S.A. 90, 1942–1946 (1993).

    Article  CAS  Google Scholar 

  7. Ptitsyn, O.B. Protein folding: hypotheses and experiments. J. prot. Chem. 6, 273–293 (1987).

    Article  CAS  Google Scholar 

  8. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins Struct. Funct. Genet. 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  9. Christensen, H. & Pain, R.H. The contribution of the molten globule model. In Mechanisms of protein folding (ed. Pain, R. H.) 55–79 (Oxford University Press, New York; 1994).

    Google Scholar 

  10. Barrick, D. & Baldwin, R.L. The molten globule intermediate of apomyoglobin and the process of protein folding. Prot. Sci. 2, 869–876 (1993).

    Article  CAS  Google Scholar 

  11. Yutani, K., Ogasahara, K. & Kuwajima, K. Absence of the thermal transition in apo-α-lactalbumin in the molten golbule state: a study by differential scanning microcalorimetry. J. molec. Biol. 228, 347–350 (1992).

    Article  CAS  Google Scholar 

  12. Goto, Y. & Fink, A.L. Conformational states of β-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry 28, 945–952 (1989).

    Article  CAS  Google Scholar 

  13. Ptitsyn, O.B., Pain, R.H., Semisotnov, G.V., Zerovnik, E. & Razgulyaev, O.I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262, 20–24 (1990).

    Article  CAS  Google Scholar 

  14. Kuwajima, K., Hiraoka, Y., Ikeguchi, M. & Sugai, S. Comparison of the transient folding intermediates in lysozyme and α-lactalbumin. Biochemistry 24, 874–881 (1985).

    Article  CAS  Google Scholar 

  15. Garvey, E.P., Swank, J. & Matthews, C.R. A hydrophobic cluster forms early in the folding of dihydrofolate reductase. Proteins Struct. Funct., Genet. 6, 259–266 (1989).

    Article  CAS  Google Scholar 

  16. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  17. Wlodawer, A., Svensson, L.A., Sjölin, L. & Gilliland, G.L. Structure of phosphate-free ribonuclease A refined at 1.26 Å. Biochemistry 27, 2705–2717 (1988).

    Article  CAS  Google Scholar 

  18. Schmid, F.X. Fast-folding and slow-folding forms of unfolded proteins. Meths Enzymol. 131, 70–82 (1986).

    Article  CAS  Google Scholar 

  19. Houry, W.A., Rothwarf, D.M. & Scheraga, H.A. A very fast phase in the refolding of disulphide-intact ribonuclease A: implications for the refolding and unfolding pathways. Biochemistry 33, 2516–2530 (1994).

    Article  CAS  Google Scholar 

  20. Pace, C.N., Laurents, D.V. & Thomson, J.A. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochemistry 29, 2564–2572 (1990).

    Article  CAS  Google Scholar 

  21. Pace, C.N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Meths Enzymol. 131, 266–280 (1986).

    Article  CAS  Google Scholar 

  22. Schellman, J.A. The thermodynamic stability of proteins. A. Rev. Biophys. biophys. Chem. 16, 115–137 (1987).

    Article  CAS  Google Scholar 

  23. Alonso, D.O.V. & Dill, K.A. Solvent denaturation and stabilization of globular proteins. Biochemistry 30, 5974–5985 (1991).

    Article  CAS  Google Scholar 

  24. Tanford, C. Protein denaturation. Theoretical models for the mechanism of denaturation. Adv. protein Chem. 24, 1–95 (1970).

    Article  CAS  Google Scholar 

  25. Glasstone, S., Laidler, K.J. & Eyring, H. The Theory of Rate Processes 1–27 (McGraw-Hill Book Company, New York; 1941).

    Google Scholar 

  26. Donovan, J.W., Laskowski, Jr., M. & Scheraga, H.A. Carboxyl group interactions in lysozyme. J. molec. Biol. 1, 293–296 (1959).

    Article  CAS  Google Scholar 

  27. Nozaki, Y. & Tanford, C. Proteins as random coils. II. Hydrogen ion titration curve of ribonuclease in 6 M guanidine hydrochloride. J. Am. chem. Soc. 89, 742–749 (1967).

    Article  CAS  Google Scholar 

  28. Greenstein, J.P. Studies of the peptides of trivalent amino acids. J. biol. Chem. 101, 603–621 (1933).

    CAS  Google Scholar 

  29. Kauzmann, W. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959).

    Article  CAS  Google Scholar 

  30. Tanford, C. The hydrophobic effect: Formation of micelles and biological membranes 16–23 (John Wiley & Sons, New York; 1973).

    Google Scholar 

  31. Némethy, G. & Scheraga, H.A. The structure of water and hydrophobic bonding in proteins. III. The thermodynamic properties of hydrophobic bonds in proteins. J. phys. Chem. 66, 1773–1789 (1962).

    Article  Google Scholar 

  32. Scheraga, H.A. Treatment of hydration in conformational energy calculations on polypeptides and proteins. In Structure and reactivity in aqueous solution (ed. Cramer, C. J. & Truhlar, D. G.) 360–370 (ACS Symposium Series No. 568, Washington, DC; 1994).

    Chapter  Google Scholar 

  33. Privalov, P.L. & Gill, S.J. Stability of protein structure and hydrophobic interaction. Adv. prot. Chem. 39, 191–234 (1988).

    CAS  Google Scholar 

  34. Creighton, T.E. Electrophoretic analysis of the unfolding of proteins by urea. J. molec. Biol. 129, 235–264 (1979).

    Article  CAS  Google Scholar 

  35. Makhatadze, G.I. & Privalov, P.L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J. molec. Biol. 226, 491–505 (1992).

    Article  CAS  Google Scholar 

  36. Haynie, D.T. & Freire, E. Structural energetics of the molten globule state. Proteins Struct. Funct. Genet. 16, 115–140 (1993).

    Article  CAS  Google Scholar 

  37. Xie, D. & Freire, E. Molecular basis of cooperativity in protein folding. V. Thermodynamic and structural conditions for the stabilization of compact denatured states. Proteins Struct. Funct. Genet. 19, 291–301 (1994).

    Article  CAS  Google Scholar 

  38. Creighton, T.E. Toward a better understanding of protein folding pathways. Proc. natn. Acad. Sci. U.S.A. 85, 5082–5086 (1988).

    Article  CAS  Google Scholar 

  39. Matouschek, A., Kellis, Jr, J.T., Serrano, L. & Fersht, A.R. Mapping the transition state and pathway of protein folding by protein engineering. Nature 340, 122–126 (1989).

    Article  CAS  Google Scholar 

  40. Fersht, A.R., Kellis, J.T. Jr, Matouschek, A.T.E.L. & Serrano, L. Folding pathway enigma. Nature 343, 602 (1990).

    Article  CAS  Google Scholar 

  41. Brandts, J.F., Halvorson, H.R. & Brennan, M. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-transisomerism of proline residues. Biochemistry 14, 4953–4963 (1975).

    Article  CAS  Google Scholar 

  42. Lin, S.H., Konishi, Y., Nail, B.T. & Scheraga, H.A. Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Kinetics of folding-unfolding. Biochemistry 24, 2680–2686 (1985).

    Article  CAS  Google Scholar 

  43. Antosiewicz, J., McCammon, J.A. & Gilson, M.K. Prediction of pH-dependent properties of proteins. J. molec. Biol. 238, 415–436 (1994).

    Article  CAS  Google Scholar 

  44. Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S. & Singh, R.M.M. Hydrogen ion buffers for biological research. Biochemistry 5, 467–477 (1966).

    Article  CAS  Google Scholar 

  45. Good, N.E. & Izawa, S. Hydrogen ion buffers. Meths Enzymol. 24, 53–68 (1972).

    Article  CAS  Google Scholar 

  46. Edsall, J.T. Dipolar ions and acid-base equilibria. In Proteins, amino acids and peptides as ions and dipolar ions (eds Cohn, E.J. & Edsall, J.T.) 75–115 (Reinhold Publishing Corporation, New York; 1943).

    Google Scholar 

  47. Caceci, M.S. & Caheris, W.P. Fitting curves to data. BYTE 9, 340–362 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houry, W., Rothwarf, D. & Scheraga, H. The nature of the initial step in the conformational folding of disulphide-intact ribonuclease A. Nat Struct Mol Biol 2, 495–503 (1995). https://doi.org/10.1038/nsb0695-495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0695-495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing