Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The crystal structure of NusB from Mycobacterium tuberculosis

Abstract

Both prokaryotes and eukaryotes regulate transcription through mechanisms that suppress termination signals. An antitermination mechanism was first characterized in bacteriophage λ. Bacteria have analogous machinery that regulates ribosomal RNA transcription and employs host factors, called the N-utilizing (where N stands for the phage λ N protein) substances (Nus), NusA, NusB, NusE and NusG. Here we report the crystal structure of NusB from Mycobacterium tuberculosis, the bacterium that causes tuberculosis in humans. This molecule shares a similar tertiary structure with the related Escherichia coli protein but adopts a different quaternary organization. We show that, unlike the E. coli homolog, M. tuberculosis NusB is dimeric both in solution and in the crystal. These data help provide a framework for understanding the structural and biological function of NusB in the prokaryotic transcriptional antitermination complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo view of the monomer of NusB.
Figure 2: M. tuberculosis NusB is a dimer.
Figure 3: Putative RNA binding motif.
Figure 4: Sequence and structural comparison between NusB homologs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Friedman, D.I. & Court, D.L. Mol. Microbiol. 18, 191–200 (1995).

    Article  CAS  Google Scholar 

  2. Keener, J. & Nomura, M. In Cellular and molecular biology (eds Neidhardt, F.C. et al.) 822–848 (American Society for Microbiology, Washington, DC; 1996).

    Google Scholar 

  3. Zellers, M. & Squires, C.L. Mol. Microbiol. 32, 1296–1304 (1999).

    Article  Google Scholar 

  4. Taura, T., Ueguchi, C. & Shiba, K, Ito, K. Mol. Gen. Genet 234, 429–432 (1992).

    Article  CAS  Google Scholar 

  5. Cole, S.T. et al. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  6. Ji, Y. & Colston, M.J, Cox, R.A. Microbiol. 140, 123–132 (1994).

    Article  CAS  Google Scholar 

  7. Ji, Y. & Colston, M. J, Cox, R.A. Microbiol. 140, 2829–2840 (1994).

    Article  CAS  Google Scholar 

  8. Bremer, H. & Dennis, P.P. In Cellular and molecular biology. (eds Neidhardt, F.C. et al.) 1527–1542 (American Society for Microbiology, Washington, DC; 1987).

    Google Scholar 

  9. Bercovier, H., Kafri, O. & Sela, S. Biochem. Biophys. Res. Comm. 136, 1136–1141 (1986)

    Article  CAS  Google Scholar 

  10. Huenges, M. et al. EMBO J. 17, 4092–4100 (1998).

    Article  CAS  Google Scholar 

  11. Altieri A.S., et al. Nature Struct. Biol. 7, 470–474 (2000).

    Article  CAS  Google Scholar 

  12. Altieri, A.S. et al. FEBS Lett. 415, 221–226 (1997).

    Article  CAS  Google Scholar 

  13. Legault, P., Li, J., Mogridge, J., Kay, L.E. & Greenblatt, J. Cell 93, 289–299 (1998)

    Article  CAS  Google Scholar 

  14. Cai, Z. et al. Nature Struct. Biol. 5, 203–212 (1998).

    Article  CAS  Google Scholar 

  15. Battiste, J.L. et al. Science 273, 1547–1551 (1996).

    Article  CAS  Google Scholar 

  16. Tan, R. & Frankel, A.D. Proc. Natl. Acad. Sci. USA 92, 5282–5287 (1995).

    Article  CAS  Google Scholar 

  17. Altschul, S.F., et al. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  18. Koonin, E.V. Nucleic Acids Res. 22, 2476–2478 (1994)

    Article  CAS  Google Scholar 

  19. King, M., Ton, D. & Redman, K.L. Biochem. J. 337, 29–35 (1999).

    Article  CAS  Google Scholar 

  20. Reid, R., Greene, P.J. & Santi, D.V. Nucleic Acids Res, 27, 3138–3145 (1999).

    Article  CAS  Google Scholar 

  21. Sharrock, R.A., Gourse, R.L. & Nomura, M. Proc. Natl. Acad. Sci. USA 82, 5275–5279 (1985).

    Article  CAS  Google Scholar 

  22. McRorie, D.K. & Voelker, P.J. Self-associating systems in the analytical ultracentrifuge (Beckman Instruments Inc., Fullerton, California; 1993).

  23. Gopal, B. et al. Acta Crystallogr D 56, 64–66 (2000).

    Article  CAS  Google Scholar 

  24. Otinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1996).

    Article  Google Scholar 

  25. Terwillinger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999)

    Article  Google Scholar 

  26. Kelywegt, G.J. & Read, R.J. Structure 5, 1557–1569 (1997).

    Article  Google Scholar 

  27. Cowtan, K. Joint CCP4 and ESF-EACBM newsletter on protein crystallography 31, 33–38 (1994).

    Google Scholar 

  28. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  29. Lamzin, V.S. & Wilson, K.S. Acta Crystallogr. D 49, 129–147 (1993).

    Article  CAS  Google Scholar 

  30. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council of the UK. We thank S. Gamblin for help in data collection and crystallographic calculations and A. Lane for advice. S. Cole of the Institute Pasteur kindly provided the M. tuberculosis cosmids from which the gene encoding NusB was amplified. This work was supported in part by the European Commission Science Research and Development Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Dodson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, B., Haire, L., Cox, R. et al. The crystal structure of NusB from Mycobacterium tuberculosis. Nat Struct Mol Biol 7, 475–478 (2000). https://doi.org/10.1038/75876

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing