Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The NMR structure of the RNA binding domain of E.coli rho factor suggests possible RNA–protein interactions

Abstract

Rho protein is an essential hexameric RNA–DNA helicase that binds nascent mRNA transcripts and terminates transcription in a wide variety of eubacterial species. The NMR solution structure of the RNA binding domain of rho, rho130, is presented. This structure consists of two sub-domains, an N-terminal three-helix bundle and a C-terminal β-barrel that is structurally similar to the oligosaccharide/oligonucleotide binding (OB) fold. Chemical shift changes of rho130 upon RNA binding and previous mutagenetic analyses of intact rho suggest that residues Asp 60, Phe 62, Phe 64, and Arg 66 are critical for binding and support the hypothesis that ssRNA/ssDNA binding is localized in the β-barrel sub-domain. On the basis of these studies and the tertiary structure of rho130, we propose that residues Asp 60, Phe 62, Phe 64, Arg 66, Tyr 80, Lys 105, and Arg 109 participate in RNA-protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Platt, T. rho and RNA: models for recognition and response. Mol. Micro. 11, 983–990 (1994).

    Article  CAS  Google Scholar 

  2. Richardson, J.P. Structural organization of transcription termination factor rho. J. Biol. Chem. 271, 1251–1254 (1996).

    Article  CAS  Google Scholar 

  3. Faus, I. & Richardson, J.P. Structural and functional properties of the segments of lambda cro mRNA that interact with transcription termination factor rho. J. Mol. Bio. 212, 53–66 (1990).

    Article  CAS  Google Scholar 

  4. Steinmetz, E.J. & Platt, T. Evidence supporting a tethered tracking model for helicase activity of Escherichia coli rho factor. Proc. Natl. Acad. Sci. USA 91, 1401–1405 (1994).

    Article  CAS  Google Scholar 

  5. Burns, C.M. & Richardson, J.P. NusG is required to overcome a kinetic limitation to rho function at an intragenic terminator. Proc. Natl. Acad. Sci. USA 92, 4738–4742 (1995).

    Article  CAS  Google Scholar 

  6. Brennan, C.A., Dombroski, A.J. & Platt, T., Transcription Termination Factor rho Is an RNA-DNA Helicase. Cell 48, 945–952 (1987).

    Article  CAS  Google Scholar 

  7. Walstrom, K.M., Dozono, J.M., Robic, S. & von, H.P. Kinetics of the RNA-DNA helicase activity of Escherichia coli transcription termination factor rho. 1. Characterization and analysis of the reaction. Biochemistry 36, 7980–7992 (1997).

    Article  CAS  Google Scholar 

  8. Walstrom, K.M., Dozono, J.M. & von, H.P. Kinetics of the RNA-DNA helicase activity of Escherichia coli transcription termination factor rho. 2. Processivity, ATP consumption, and RNA binding. Biochemistry 36, 7993–8004 (1997).

    Article  CAS  Google Scholar 

  9. Galluppi, G.R. & Richardson, J.P. ATP-induced changes in the binding of RNA synthesis termination protein rho to RNA. J. Mol. Biol. 138, 513–539 (1980).

    Article  CAS  Google Scholar 

  10. Richardson, J.P. Activation of rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid-binding sites. J. Biol. Chem. 257, 5760–5766 (1982).

    CAS  PubMed  Google Scholar 

  11. Seifried, S.E., Easton, J.B. & von, H.P. ATPase activity of transcription-termination factor rho: functional dimer model. Proc. Natl. Acad. Sci. USA 89, 10454–10458 (1992).

    Article  CAS  Google Scholar 

  12. Wang, Y. & von Hippel P.H. Escherichia coli transcription termination factor rho. I. ATPase activation by oligonucleotide cofactors. J. Biol. Chem. 268, 13940–13946 (1993).

    CAS  PubMed  Google Scholar 

  13. Geiselmann, J. & von Hippel P.H. Functional interactions of ligand cofactors with Escherichia coli transcription factor rho. I. Binding of ATP. Protein Sci. 1, 850–860 (1992).

    Article  CAS  Google Scholar 

  14. Lowery, C. & Richardson, J. Characterization of the nucleoside triphosphate phosphohydrolase (ATPase) activity of RNA synthesis termination factor rho. J. Bio. Chem. 252, 1381–1385 (1977).

    CAS  Google Scholar 

  15. Wang, Y. & von Hippel P.H. Escherichia coli transcription termination factor rho. II. Binding of oligonucleotide cofactors. J. Bio. Chem. 268, 13947–13955 (1993).

    CAS  Google Scholar 

  16. Geiselmann, J., Wang, Y., Seifried, S.E. & von Hippel P.H. A physical model for the translocation and helicase activities of Escherichia coli transcription termination protein rho. Proc. Natl. Acad. Sci. USA 90, 7754–7758 (1993).

    Article  CAS  Google Scholar 

  17. Dombroski, A.J. & Platt, T. Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains. Proc. Nat1. Acad. Sci. USA 85, 2538–2542 (1988).

    Article  CAS  Google Scholar 

  18. Dolan, J.W., Marshall, N.F. & Richardson, J.P. Transcription termination factor rho has three distinct structural domains. J. Biol. Chem. 265, 5747–5754 (1990).

    CAS  PubMed  Google Scholar 

  19. Briercheck, D.M., Allison, T.J., Richardson, J.P., Ellena, J.F., Wood, T.C. & Rule, G.S. 1H, 15N and 13C resonance assignments and secondary structure determination of the RNA-binding domain of E.coil rho protein. J. Biomol. NMR 8, 429–444 (1996).

    Article  CAS  Google Scholar 

  20. Brennan, C.A. & Platt, T. Mutations in an RNP1 consensus sequence of rho protein reduce RNA binding affinity but facilitate helicase turnover. J. Biol. Chem. 266, 17296–17305 (1991).

    CAS  PubMed  Google Scholar 

  21. Modrak, D. & Richardson, J.P., RNA-binding domain of transcription termination factor rho: isolation, characterization, and determination of sequence limits. Biochemistry 33, 8292–8299 (1994).

    Article  CAS  Google Scholar 

  22. Haynes, S.R. The RNP Motif Protein Family. The New Biologist 4, 421–429 (1992).

    CAS  PubMed  Google Scholar 

  23. Burd, C.G. & Dreyfuss, G., Conserved Sturctures and Diversity of Functions of RNA-Binding Proteins. Science 265, 615–621 (1994).

    Article  CAS  Google Scholar 

  24. Martinez, A.A., Opperman, A.T. & Richardson, J. Mutational Analysis and secondary Structure Model of the RNPI-like Sequence Motif of Transcription Termination Factor rho. J. Mol. Biol. 257, 895–908 (1996).

    Article  CAS  Google Scholar 

  25. Martinez, A.A., Burns, A.C. & Richardson, A.J. Residues in the RNP1-like Sequence Motif of rho Protein are Involved in RNA-Binding Affinity and Discrimination. J. Mol. Biol. 257, 909–918 (1996).

    Article  CAS  Google Scholar 

  26. Murzin, A.G. OB(oligonucleotide/oligosaccharide binding)-fold; common structural and functional solution non-homologous sequences. EMBO J. 12, 861–867 (1993).

    Article  CAS  Google Scholar 

  27. Nagai, K., Outbridge, C., Jessen, T.H., Li, J. & Evans, P.R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nucleic Acids Res. 348, 515–520 (1990).

    CAS  Google Scholar 

  28. Oubridge, C., Ito, N., Evans, P.R., Teo, C.-H. & Nagai, K. Crystal structure at 1.92 A Resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  CAS  Google Scholar 

  29. Hoffman, D.W., Query, C.C., Golden, B.L., White, S.W. & Keene, J.D. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleopritein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc. Natl. Acad. Sci. USA 88, 2495–2499 (1991).

    Article  CAS  Google Scholar 

  30. Shamoo, Y., Kreuger, U., Rice, L.M., Williams, K.R. & Steitz, T.A. Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 A. Nature Struct. Biol. 4, 215–222 (1997).

    Article  CAS  Google Scholar 

  31. Wittekind, M., Gorlach, M., Friedrichs, M.S., Dreyfuss, G. & Mueller, L. 1H, 13C, and 15N NMR assignments and global folding pattern of the RNA-binding domain of the human hnRNP C proteins. Biochemistry 31, 6254–6265 (1992).

    Article  CAS  Google Scholar 

  32. Lee, A.L., Kanaar, R., Rio, D.C. & Wemmer, D.E. Resonance assignments and solution structure of the second RNA-binding domain of sex-lethal determined by multidimensional heteronuclear magnetic resonance. Biochemistry 33, 13775–13786 (1994).

    Article  CAS  Google Scholar 

  33. Lee, A.L. et al. Chemical shift mapping of the RNA-binding interface of the multiple-RBD protein sex-lethal. Biochemistry 36, 14306–14317 (1997).

    Article  CAS  Google Scholar 

  34. Bycroft, M., Hubbard, T.J.P., Proctor, M., Freund, S.M.V. & Murzin, A.G. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88, 235–242 (1997).

    Article  CAS  Google Scholar 

  35. Schindelin, A.H., Jiang, A.W., Inouye, A.M. & Heinemann, A.U. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc. Watl. Acad. Sci. USA 91, 5119–5123 (1994).

    Article  CAS  Google Scholar 

  36. Ruff, M. et al. Class II Aminoacyl transfer RNA synthetases: Crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA Asp. Science 252, 1682–1689 (1991).

    Article  CAS  Google Scholar 

  37. Cavarelli, J., Rees, B., Ruff, M., Thierry, J.-C. & Moras, D. Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase. Nature 362, 181–184 (1993).

    Article  CAS  Google Scholar 

  38. Bochkarev, A., Pfuetzner, R.A., Edwards, A.M. & Frappier, L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385, 176–181 (1997).

    Article  CAS  Google Scholar 

  39. Raghunathan, S., Ricard, C.S., Lohman, T.M. & Waksman, G. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by muttiwavelength x-ray diffraction on the selenomethionyl protein at 2.9 Å resolution. Proc. Watl. Acad. Sci. USA 94, 6652–6657 (1997).

    Article  CAS  Google Scholar 

  40. Yang, C., Curth, U., Urbanke, C. & Kang, C. Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution. Nature Struct. Biol. 4, 153–157 (1997).

    Article  CAS  Google Scholar 

  41. Laskowski, R.A., Rullman, J.A.C., MacArthur, M.W. & Thorton J.M. Aqua and Procheck: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–186 (1997).

    Google Scholar 

  42. Allison, T.J., Briercheck, D.M., Wood, T.C., Rastinejad, F., Richardson, J.P. & Rule, G.S. Crystal structure of the RNA-binding domain from transcription termination factor rho. Nature Struct. Biol. 5, 352–356 (1998).

    Article  CAS  Google Scholar 

  43. Opperman, T. & Richardson, J.P. Phylogenetic analysis of sequences from diverse bacteria with homology to the Escherichia coli rho gene. J. Bacteriol. 176, 5033–5043 (1994).

    Article  CAS  Google Scholar 

  44. Mori, H., Imai, M. & Shigesada, K. Mutant rho factors with increased transcription termination activities. II. Identification and functional dissection of amino acid changes. J. Mol. Biol. 210, 39–49 (1989).

    Article  CAS  Google Scholar 

  45. McSwiggen, J.A., Bear, D.G. & von, H.P. Interactions of Escherichia coli transcription termination factor rho with RNA. I. Binding stoichiometries and free energies. J. Mol. Biol. 199, 609–622 (1988).

    Article  CAS  Google Scholar 

  46. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N enriched protein by isotropic mixing of 13C magnetization. J. Magn. Reson. B 101, 114–119 (1993).

    Article  CAS  Google Scholar 

  47. Vuister, G.W. and Bax, A. Quantitative J Correlation: A New approach for measuring homonuclear three-bond J coupling constants in 15N enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  48. Suri, A.K., Kitchen, & Levy, R.M. Estimation of Interatomic distances in proteins from NOE spectra at longer mixing times using an empirical two-spin equation. J. Magn. Reson. B 101 320–324 (1993).

    Article  CAS  Google Scholar 

  49. Brunger, A.T. X-PLOR Version 3.851 A System for X-ray Crystallography and NMR (Yale University Press, New Haven; 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briercheck, D., Wood, T., Allison, T. et al. The NMR structure of the RNA binding domain of E.coli rho factor suggests possible RNA–protein interactions. Nat Struct Mol Biol 5, 393–399 (1998). https://doi.org/10.1038/nsb0598-393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0598-393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing