Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength

Abstract

S-Adenosylhomocysteine (AdoHcy) hydrolase regulates all adenosylmethionine-(AdoMet) dependent transmethylations by hydrolyzing the potent feedback inhibitor AdoHcy to homocysteine and adenosine. The crystallographic structure determination of a selenomethionyl-incorporated AdoHcy hydrolase inhibitor complex was accomplished using single wavelength anomalous diffraction data and the direct methods program, Snb v2.0, which produced the positions of all 30 crystallographically distinct selenium atoms. The mode of enzyme–cofactor binding is unique, requiring interactions from two protein monomers. An unusual dual role for a catalytic water molecule in the active site is revealed in the complex with the adenosine analog 2′-hydroxy, 3′-ketocyclopent-4′-enyladenine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Borchardt, R.T., Creveling, C.R. & Ueland, P.M. Biological methylation and drug design — Experimental and clinical roles of S-adenosylmethione (Humana Press, Clifton, NJ, 1986).

    Book  Google Scholar 

  2. de la Haba, G. & Cantoni, G. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J. Biol. Chem. 234, 603–608 (1959).

    CAS  PubMed  Google Scholar 

  3. Ueland, P.M. Pharmacological and biochemical aspects of S-adenosylhomocysteine and S-adenosylhomocysteine hydrolase. Pharmacol. Rev. 34, 223–253 (1982).

    CAS  PubMed  Google Scholar 

  4. Miller, M.W. et al. The mouse lethal nonagouti (Ax) mutation deletes the S-adenosylhomocysteine hydrolase (Ahcy) gene. EMBO J 13, 1806–1816 (1994).

    Article  CAS  Google Scholar 

  5. Palmer, J.L. & Abeles, R.H. The mechanism of action of S-adenosylhomocysteinase. J. Biol. Chem. 254, 1217–1226 (1979).

    CAS  PubMed  Google Scholar 

  6. Hershfield, M.S., Kredich, N.M. S-adenosylhomocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science 202, 757–760 (1978).

    Article  CAS  Google Scholar 

  7. Hershfield, M.S. Apparent suicide inactivation of human lymphoblast S-adenosylhomocysteine hydrolase by 2′-deoxyadenosine and adenine arabinoside: A basis for direct toxic effects of analogs of adenosine. 254, 22–25 (1979).

  8. Kredich, N.M. & Martin, D.W., Jr., Role of S-adenosylhomocysteine in adenosinemediated toxicity in cultured mouse T lymphoma cells. Cell 12, 931–938 (1977).

    Article  CAS  Google Scholar 

  9. Hershfield, M.S., Kredich, N.M., Ownby, D.R., Ownby, H. & Buckley, R. In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2′-adeoxyadenosine in adenosine deaminase-deficient patients. J. Clin. Invest. 63, 807–811 (1979).

    Article  CAS  Google Scholar 

  10. Wolfe, M.S., Borchardt, R.T. S-adenosyl-L-homocysteine hydrolase as a target for antiviral chemotherapy. J. Med. Chem. 34, 1521–1530 (1991).

    Article  CAS  Google Scholar 

  11. Bitonti, A.J., Baumann, R.J., Jarvi, E.T., McCarthy, J.R. & McCann, P.P. Antimalarial activity of a 4′,5′-unsaturated 5′-fluoroadenosine mechanism-based inhibitor of S-adenosyl-L-homocysteine hydrolase. Biochem. Pharmacol. 40, 601–606 (1990).

    Article  CAS  Google Scholar 

  12. Wolos, J.A., Frondorf, K.A. & Esser, R.E. Immunosuppression mediated by an inhibitor of S-adenosyl-L-homocysteine hydrolase. Prevention and treatment of collagen-induced arthritis. J. Immunol. 151, 526–534 (1993).

    CAS  PubMed  Google Scholar 

  13. Turner, M.A. et al. Crystallization and preliminary X-ray analysis of human placental S-adenosylhomocysteine hydrolase. Acta Crystallogr. D53, 339–341 (1997).

    CAS  Google Scholar 

  14. Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  15. Ault-Riche, D.B. et al. Effects of 4′-modified analogs of aristeromycin on the metabolism of S-adenosyl-L-homocysteine in murine L929 cells. Mol. Pharmacol. 43, 989–997 (1993).

    CAS  PubMed  Google Scholar 

  16. Miller, R., Gallo, S.M., Khalak, H.G. & Weeks, C.M. Snb: Crystal structure determination via Shake-and-Bake. J. Appl. Crystallogr. 27, 613–621 (1994).

    Article  CAS  Google Scholar 

  17. Smith, G.D., Nagar, B., Rini, J.M., Hauptman, H.A., Blessing, R.H. The use of Snb to determine an anomalous scattering substructure. Acta Cryst., in the press (1998).

  18. Ramakrishnan, V. & Biou, V. Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. Meths Enz. 76, 538–557 (1997).

    Article  Google Scholar 

  19. Furey, W. & Swaninathan, S. PHASES-95: A program for processing and analyzing diffraction data from macromolecules in Methods in Enzymology (eds. Carter, C.W. & Sweet, R.M.) 590–633 (Academic Press, New York, 1997).

    Google Scholar 

  20. Brünger, A.T. et al. Crystallography and NMR System (CNS): A new software system for macromolecular structure determination. Acta Crystallogr. D, submitted (1998).

  21. Kleijwegt, G.J. & Jones, T.A. Detecting folding motifs and similarities in protein structures. Meths Enz. 277, 525–545 (1997).

    Article  Google Scholar 

  22. Lamzin, V.S. et al. Crystal structure of NAD-dependent formate dehydrogenase. Eur. J. Biochem. 206, 441–452 (1992).

    Article  CAS  Google Scholar 

  23. Rossman, M.J., Liljas, A., Branden, C.-I. & Banaszak, L.J., In The Enzymes (ed. Boyer, P.D.) 61–102 (Academic Press, New York; 1975).

    Google Scholar 

  24. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  25. Lesk, A.M. NAD-binding domains of dehydrogenases. Curr. Opin. Struct. Biol. 5, 775–783 (1995).

    Article  CAS  Google Scholar 

  26. Buehner, M., Ford, G.C., Moras, D., Olsen, K.W. & Rossmann, M.G. D-Glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. Proc. Natl. Acad. Sci. USA 70, 3052–3054 (1973).

    Article  CAS  Google Scholar 

  27. Philips, C., Gover, S. & Adams, M.J. Structure of 6-phosphogluconate dehydrogenase refined at 2Å resolution. Acta Crystallogr. D51, 290–307 (1995).

    Google Scholar 

  28. Ghosh, D. et al. Three-dimensional structure of hole 3α,20β-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family. Proc. Natl. Acad. Sci. USA 88, 10064–10068 (1991).

    Article  CAS  Google Scholar 

  29. Varughese, K.I., Skinner, M.M., Whiteley, J.M., Matthews, D.A. & Xuong, N.H. Crystal structure of rat liver dihydropteridine reductase. Proc. Natl. Acad. Sci. USA 89, 6080–6084 (1992).

    Article  CAS  Google Scholar 

  30. Degano, M., Gopaul, D.N., Scapin, G., Schramm, V.L. & Sacchettini, J.C. Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata. Biochemistry 35, 5971–5981 (1996).

    Article  CAS  Google Scholar 

  31. Ault-Riche, D.B., Yuan, C.S. & Borchardt, R.T. A single mutation at lysine 426 of human placental S-adenosylhomocysteine hydrolase inactivates the enzyme. J. Biol. Chem. 269, 31472–31478 (1994).

    CAS  PubMed  Google Scholar 

  32. Goldberg, J.D., Yoshida, T. & Brick, P. Crystal structure of a NAD-dependent D-glycerate dehydrogenase at 2.4 Å resolution. J. Mol. Biol. 236, 1123–1140 (1994).

    Article  CAS  Google Scholar 

  33. Yuan, C.-S., Liu, S., Wnuk, S.F., Robins, M.J., Borchardt, R.T. Design and synthesis of S-Adenosylhomocysteine hydrolase inhibitors as broad-spectrum antiviral agents. Adv. Antiviral Drug Des. 2, 41–88 (1996).

    Article  CAS  Google Scholar 

  34. Abeles, R.H., Fish, S. & Lapinskas, B. S-Adenosylhomocysteinase: Mechanism of inactivation by 2′-deoxyadenosine and interaction with other nucleosides. Biochemistry 21, 5557–5562 (1982).

    Article  CAS  Google Scholar 

  35. Cleland, W.W. & Kreevoy, M.M. Low-barrier hydrogen bonds and enzymic catalysis. Science 264, 1887–1890 (1994).

    Article  CAS  Google Scholar 

  36. Takata, Y., Tomoharu, G. & Fujioka, M. Chemical modification of S-adenosylhomocysteinase by a water-soluble carbodiimide. Arch. Biochem. Biophys. 240, 827–835 (1985).

    Article  CAS  Google Scholar 

  37. Gomi, T., Ogawa, H. & Fujioka, M. S-adenosylhomocysteinase from rat liver. Amino acid sequences of the peptides containing active site cysteine residues modified by treatment with 5′-p-fluorosulfonylbenzoyladenosine. J. Biol. Chem. 261, 13422–13425 (1986).

    CAS  PubMed  Google Scholar 

  38. Takata, Y. & Fujioka, M. 5′-[p-(Fluorosulfonyl)benzoyl] adenosine-mediated inactivation of S-adenosylhomocysteinase. Biochemistry 23, 4357–4362 (1984).

    Article  CAS  Google Scholar 

  39. Gomi, T. & Fujioka, M. Evidence for an essential histidine residue in S-adenosylhomocysteinase from rat liver. Biochemistry 22, 137–143 (1983).

    Article  CAS  Google Scholar 

  40. Yuan, C.-S., Yeh, J., Squier, T.C., Rawitch, A. & Borchardt, R.T. Ligand-dependent changes in intrinsic fluorescence of S-adenosylhomocysteine hydrolase: implications for the mechanism of inhibitor-induced inhibition. Biochemistry 32, 10414–10422 (1993).

    Article  CAS  Google Scholar 

  41. Doublié, S., Carter, C.W. in Crystallization of nucleic acids and proteins: a practical approach (eds Ducruix, A. & Giegé, R.) 311–317 (Oxford University Press, New York; 1992).

    Google Scholar 

  42. Yuan, C.S., Wnuk, S.F., Liu, S., Robins, M.J. & Borchardt, R.T. (E)-5′,6′-didehydro-6′-deoxy-6′-flurohomoadenosine: a substrate that measures the hydrolytic activity ofS-adenosylhomocysteine hydrolase. Biochemistry 33, 12305–12311 (1994).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meths Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  44. Blessing, R.H. Data reduction and error analysis for accurate single crystal diffraction intensities. Crystallogr. Rev. 1, 3–58 (1987).

    Article  Google Scholar 

  45. French, S. & Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. A34, 517–525 (1978).

    Article  CAS  Google Scholar 

  46. Blessing, R.H. J. Appl. Crystallogr. 30, 176–178 (1997).

    Article  CAS  Google Scholar 

  47. Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  48. Kleijwegt, G.J. & Jones, T.A. In From first map to final model (eds. Bailey, S., Hubbard, R. & Waller, D.) 59–66 (SERC Daresbury, Warrington; 1994).

    Google Scholar 

  49. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  Google Scholar 

  50. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  51. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  52. Hutchinson, E.G. & Thornton, J.M. PROMOTIF-a program to identify and analyze structural motifs in proteins. Protein Sci. 5, 212–220 (1996).

    Article  CAS  Google Scholar 

  53. Flores, T.P., Moss, D.S. & Thornton, J.M. An algorithm for automatically generating protein topology cartoons. Protein Engng. 7, 31–37 (1994).

    Article  CAS  Google Scholar 

  54. Brünger, A.T. XPLOR Version 3.1 (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lynne Howell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, M., Yuan, CS., Borchardt, R. et al. Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength. Nat Struct Mol Biol 5, 369–376 (1998). https://doi.org/10.1038/nsb0598-369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0598-369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing