Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Small angle X-ray scattering reveals a compact intermediate in RNA folding

Abstract

We have used small angle X-ray scattering (SAXS) to monitor changes in the overall size and shape of the Tetrahymena ribozyme as it folds. The native ribozyme, formed in the presence of Mg2+, is much more compact and globular than the ensemble of unfolded conformations. Time-resolved measurements show that most of the compaction occurs at least 20-fold faster than the overall folding to the native state, suggesting that a compact intermediate or family of intermediates is formed early and then rearranges in the slow steps that limit the overall folding rate. These results lead to a kinetic folding model in which an initial ‘electrostatic collapse’ of the RNA is followed by slower rearrangements of elements that are initially mispositioned.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Tetrahymena ribozyme.
Figure 2: Limiting models for the rate of compaction of the ribozyme relative to overall folding.
Figure 3: Tertiary folding of the ribozyme detected by SAXS.
Figure 4: Compaction of the ribozyme is much faster than overall folding to the native state.

Similar content being viewed by others

References

  1. Treiber, D.K. & Williamson, J.R. Curr. Opin. Struct. Biol. 9, 339–345 (1999).

    Article  CAS  Google Scholar 

  2. Ferre-D'Amare, A.R. & Doudna, J.A. Annu. Rev. Biophys. Biomol. Struct. 28, 57–73 (1999).

    Article  CAS  Google Scholar 

  3. Latham, J.A. & Cech, T.R. Science 245, 276–282 (1989).

    Article  CAS  Google Scholar 

  4. Golden, B.L., Gooding, A.R., Podell, E.R. & Cech, T.R. Science 282, 259–264 ( 1998).

    Article  CAS  Google Scholar 

  5. Zarrinkar, P.P. & Williamson, J.R. Science 265, 918–924 (1994).

    Article  CAS  Google Scholar 

  6. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. Science 279, 1940–1943 (1998).

    Article  CAS  Google Scholar 

  7. Glatter, O. & Kratky, O. Small angle X-ray scattering. (Academic Press, London; 1982).

    Google Scholar 

  8. Pan, J., Thirumalai, D. & Woodson, S.A. J. Mol. Biol. 273, 7– 13 (1997).

    Article  CAS  Google Scholar 

  9. Treiber, D.K., Rook, M.S., Zarrinkar, P.P. & Williamson, J.R. Science 279, 1943–1946 (1998).

    Article  CAS  Google Scholar 

  10. Zarrinkar, P.P. & Williamson, J.R. Nature Struct. Biol. 3, 432–438 ( 1996).

    Article  CAS  Google Scholar 

  11. Lake, J.A. & Beeman, W.W. J. Mol. Biol. 31, 115–125 (1968).

    Article  CAS  Google Scholar 

  12. Pilz, I., Kratky, O., Cramer, F., Haar, F.v.d. & Schlimme, E. Eur. J. Biochem. 15, 401– 409 (1970).

    Article  CAS  Google Scholar 

  13. Kratky, O. & Pilz, I. Q. Rev. Biophys. 5, 481–537 (1972).

    Article  CAS  Google Scholar 

  14. Plaxco, K.W., Millett, I.S., Segel, D.J., Doniach, S. & Baker, D. Nature Struct. Biol. 6 , 554–556 (1999).

    Article  CAS  Google Scholar 

  15. Segel, D.J., et al. J. Mol. Biol. 288, 489– 499 (1999).

    Article  CAS  Google Scholar 

  16. Pollack, L., et al. Proc. Natl. Acad. Sci. USA 96, 10115 –10117 (1999).

    Article  CAS  Google Scholar 

  17. Celander, D.W. & Cech, T.R. Science 251, 401–407 (1991).

    Article  CAS  Google Scholar 

  18. Herschlag, D. & Cech, T.R. Biochemistry 29, 10159–10171 (1990).

    Article  CAS  Google Scholar 

  19. Grosshans, C.A. & Cech, T.R. Biochemistry 28, 6888–6894 (1989).

    Article  CAS  Google Scholar 

  20. McConnell, T.S., Herschlag, D. & Cech, T.R. Biochemistry 36, 8293– 8303 (1997).

    Article  CAS  Google Scholar 

  21. Murphy, F.L. & Cech, T.R. Biochemistry 32, 5291–5300 (1993).

    Article  CAS  Google Scholar 

  22. Doherty, E.A. & Doudna, J.A. Biochemistry 36, 3159–3169 (1997).

    Article  CAS  Google Scholar 

  23. Pan, T. & Sosnick, T.R. Nature Struct. Biol. 4, 931–938 (1997).

    Article  CAS  Google Scholar 

  24. Russell, R. & Herschlag, D. J. Mol. Biol. 291, 1155–1167 (1999).

    Article  CAS  Google Scholar 

  25. Rook, M.S., Treiber, D.K. & Williamson, J.R. J. Mol. Biol. 281, 609– 620 (1998).

    Article  CAS  Google Scholar 

  26. Lehnert, V., Jaeger, L., Michel, F. & Westhof, E. Chem. Biol. 3, 993–1009 (1996).

    Article  CAS  Google Scholar 

  27. Pan, J. & Woodson, S.A. J. Mol. Biol. 294, 955–965 (1999).

    Article  CAS  Google Scholar 

  28. Herschlag, D. J. Biol. Chem. 270, 20871–20874 (1995).

    Article  CAS  Google Scholar 

  29. Zaug, A.J., Grosshans, C.A. & Cech, T.R. Biochemistry 27, 8924– 8931 (1988).

    Article  CAS  Google Scholar 

  30. Narlikar, G.J., Bartley, L.E., Khosla, M. & Herschlag, D. Biochemistry 38, 14192–14204 (1999).

    Article  CAS  Google Scholar 

  31. Tsuruta, H., et al. J. Appl. Crystallogr. 31, 672– 682 (1998).

    Article  CAS  Google Scholar 

  32. Semenyuk, A.V. & Svergun, D.I. J. Appl. Crystallogr. 24, 537–540 ( 1991).

    Article  Google Scholar 

  33. Michel, F. & Westhof, E. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Tsurata for help on beamline 4-2 and K. Hodgson for his support. This research was supported by an NIH grant to D.H. The US Department of Energy and the National Institutes of Health support SSRL. R.R. was supported by an NIH postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Herschlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, R., Millett, I., Doniach, S. et al. Small angle X-ray scattering reveals a compact intermediate in RNA folding . Nat Struct Mol Biol 7, 367–370 (2000). https://doi.org/10.1038/75132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing