Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A collapsed non-native RNA folding state

Abstract

At physiological Mg2+ concentrations, the catalytic core of the bI5 group I intron does not fold into its native structure. In contrast, as judged by the global size, this RNA undergoes structural collapse at Mg2+ concentrations much lower than required to drive folding of the RNA completely to the native state. The bI5 RNA therefore exists in equilibrium between expanded and collapsed non-native states. The activation energy of RNA folding from the collapsed state to the native state is negligible and the reaction is not accelerated by the addition of urea. This collapsed state is thus distinct from the kinetic traps observed during folding of other large RNAs. The collapsed non-native state forms readily in the case of bI5 RNA and may exist generically prior to assembly of other ribonucleoprotein holoenzymes, such as the ribosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structure of bI5core RNA, its solvent inaccessible interior, and the Mg2+ dependence of native tertiary folding.
Figure 2: Collapse of bI5core RNA analyzed by native gel electrophoresis and size exclusion chromatography.
Figure 3: Conformation of the bI5core RNA at equilibrium as a function of MgCl2.
Figure 4: Simplified schemes for determining the rate constant for reaction of the native (N) RNA (kc), and for folding of the RNA from non-native states (kfold).
Figure 5: Nature of the rate limiting step for bI5 RNA catalysis and folding determined from the activation enthalpy and urea dependence.

Similar content being viewed by others

References

  1. Latham, J.A. & Cech, T.R. Science 245, 276–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Cate, J.H. et al. Science 273, 1678–1685 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Golden, B.L., Gooding, A.R., Podell, E.R. & Cech, T.R. Science 282, 259–264 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  4. Weeks, K.M. Curr. Opin. Struct. Biol. 7, 336–342 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Lambowitz, A.M., Caprara, M.G., Zimmerly, S. & Perlman, P.S. In The RNA World (eds Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 451–485 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1999).

    Google Scholar 

  6. Weeks, K.M. & Cech, T.R. Biochemistry 34, 7728–7738 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Partono, S. & Lewin, A.S. Mol. Cell Biol. 8, 2562–2571 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weeks, K.M. & Cech, T.R. Science 271, 345–348 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Weeks, K.M. & Cech, T.R. Cell 82, 221 –230 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Celander, D.W. & Cech, T.R. Biochemistry 29, 1355–1361 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Walter, F., Murchie, A.I.H., Duckett, D.R. & Lilley, D.M.J. RNA 4, 719–728 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friederich, M.W., Gast, F.U., Vacano, E. & Hagerman, P.J. Proc. Natl. Acad. Sci. USA 92, 4803–4807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murphy, F.L., Wang, Y.H., Griffith, J.D. & Cech, T.R. Science 265, 1709–1712 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  14. Costa, M. & Michel, F. EMBO J. 14, 1276–1285 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy, F.L. & Cech, T.R. J. Mol. Biol. 236, 49–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Workman, C. & Krogh, A. Nucleic Acids Res. 27, 4816–4822 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manning, G.S. Q. Rev. Biophys. 11, 179–246 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Misra, V.K. & Draper, D.E. Biopolymers 48, 113–135 (1999).

    Article  Google Scholar 

  19. Cantor, C.R. & Schimmel, P.R. In Biophysical Chemistry, Part II. Techniques for the study of biological structure and function. 670–676 (W.H. Freeman and Co., New York; 1980).

    Google Scholar 

  20. Emerick, V.L. & Woodson, S.A. Proc. Natl. Acad. Sci. USA 91, 9675–9679 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pan, J. & Woodson, S.A. J. Mol. Biol. 280, 597–609 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Zarrinkar, P.P. & Williamson, J.R. Science 265, 918–924 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Zarrinkar, P.P., Wang, J. & Williamson, J.R. RNA 2, 564– 573 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rook, M.S., Treiber, D.K. & Williamson, J.R. J. Mol. Biol. 281, 609– 620 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Pan, T. & Sosnick, T.R. Nature Struct. Biol. 4, 931–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Gluick, T.C., Gerstner, R.B. & Draper, D.E. J. Mol. Biol. 270, 451– 463 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Russell, R. & Herschlag, D. J. Mol. Biol. 291, 1155–1167 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Cole, P.E., Yang, S.K. & Crothers, D.M. Biochemistry 11, 4358– 4368 (1972).

    Article  CAS  PubMed  Google Scholar 

  29. Pan, J., Thirumalai, D. & Woodson, S.A. J. Mol. Biol. 273, 7– 13 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Treiber, D.K. & Williamson, J.R. Curr. Opin. Struct. Biol. 9, 339–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Li, Y., Bevilacqua, P.C., Mathews, D. & Turner, D.H. Biochemistry 34, 14394–14399 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. McConnell, T.S. & Cech, T.R. Biochemistry 34, 4056–4067 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Fang, X., Pan, T. & Sosnick, T.R. Nature Struct. Biol. 6, 1091– 1095 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Cole, P.E. & Crothers, D.M. Biochemistry 11, 4368–4374 (1972).

    Article  CAS  PubMed  Google Scholar 

  35. Ptitsyn, O.B. Adv. Protein Chem. 47, 83–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Hill, J., McGraw, P. & Tzagoloff, A. J. Biol. Chem. 260, 3235– 3238 (1985).

    CAS  PubMed  Google Scholar 

  37. Friederich, M.W. & Hagerman, P.J. Biochemistry 36, 6090–6099 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  38. Maglott, E.J., Deo, S.S., Przykorska, A. & Glick, G.D. Biochemistry 37, 16349–16359 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Bassi, G.S., Murchie, A.I.H., Walter, F., Clegg, R.M. & Lilley, D.M.J. EMBO J. 16, 7481–7489 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kebbekus, P., Draper, D.E. & Hagarman, P.J. Biochemistry 34, 4354– 4357 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Cech, T.R., Damberger, S.H. & Gutell, R.R. Nature Struct. Biol. 1, 273 –280 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Lohman, T.M. CRC Crit. Rev. Biochemistry 19, 191– 245 (1986).

    CAS  Google Scholar 

  43. Walter, N.G., Hampel, K.J., Brown, K.M. & Burke, J.M. EMBO J. 17, 2378–2391 ( 1988).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Searle Scholars Program of the Chicago Community Trust and by the NIH to K.M.W. Plasmids pGJ122A38 and pGJ122B38 used to produce the 174 bp dsRNA were the gift of P.J. Hagerman. We thank members of the Weeks laboratory for helpful discussion and T. Hall for advice on size exclusion chromatography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Weeks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchmueller, K., Webb, A., Richardson, D. et al. A collapsed non-native RNA folding state. Nat Struct Mol Biol 7, 362–366 (2000). https://doi.org/10.1038/75125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing