Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMR structure of the Tn916 integrase–DNA complex

Abstract

The integrase protein catalyzes the excision and integration of the Tn 916 conjugative transposon, a promiscuous genetic element that spreads antibiotic resistance in pathogenic bacteria. The solution structure of the N-terminal domain of the Tn916 integrase protein bound to its DNA-binding site within the transposon arm has been determined. The structure reveals an interesting mode of DNA recognition, in which the face of a three-stranded antiparallel β-sheet is positioned within the major groove. A comparison to the structure of the homing endonuclease I-PpoI–DNA complex suggests that the three-stranded sheet may represent a new DNA-binding motif whose residue composition and position within the major groove are varied to alter specificity. The structure also provides insights into the mechanism of conjugative transposition. The DNA in the complex is bent ˜35° and may, together with potential interactions between bound integrase proteins at directly repeated sites, significantly bend the arms of the transposon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Schematic of the Tn916 transposon.
Figure 2: The NMR solution structure of the complex between the N-terminal domain of integrase and its DNA-binding site (INT-DBD–DNA).
Figure 3: a, Schematic plot of the protein–DNA contacts seen in the structure of the INT-DBD–DNA complex.
Figure 4: a, Comparison of the free (colored blue) and bound (colored green) forms of the INT-DBD.
Figure 5: Comparison of the INT-DBD with the only other known proteins that bind the major groove of DNA through β-sheet secondary structural elements.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Clewell, D.B., Flannagan, S.E. & Jaworski, D.D. Unconstrained bacterial promiscuity: the Tn916 –Tn1545 family of conjugative transposons. Trends Microbiol. 3, 229–236 ( 1995).

    Article  CAS  Google Scholar 

  2. Scott, J.R. & Churchward, G. Conjugative transposition. Ann. Rev. Microbiol. 49, 367–397 (1995).

    Article  CAS  Google Scholar 

  3. Salyers, A.A., Shoemaker, N.B., Stevens, A.M. & Li, L.Y. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59, 579– 590 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Poyart-Salmeron, C., Trieu-Cuot, P., Carlier, C. & Courvalin, P. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545. EMBO J. 8, 2425–2433 (1989).

    Article  CAS  Google Scholar 

  5. Rudy, C., Taylor, K.L., Hinerfeld, D., Scott, J.R. & Churchward, G. Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res. 25, 4061–4066 (1997).

    Article  CAS  Google Scholar 

  6. Jaworski, D.D., Flannagan, S.E. & Clewell, D.B. Analyses of traA, int-Tn, and xis-Tn mutations in the conjugative transposon Tn916 in Enterococcus faecalis. Plasmid 36, 201–208 ( 1996).

    Article  CAS  Google Scholar 

  7. Esposito, D. & Scocca, J.J. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acid Res. 25, 3605–3614 (1997).

    Article  CAS  Google Scholar 

  8. Argos, P. et al. The integrase family of site specific recombinases: regional similarities and global diversity. EMBO J. 5, 433–440 (1986).

    Article  CAS  Google Scholar 

  9. Lu, F. & Churchward, G. Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 13, 1541–1548 (1994).

    Article  CAS  Google Scholar 

  10. Landy, A. Dynamic, structural, and regulatory aspects of lambda site-specific integration. Ann. Rev. Biochem. 58, 913– 949 (1989).

    Article  CAS  Google Scholar 

  11. Gou, F., Gopaul, D.N. & Van Duyne, G.D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997).

    Article  Google Scholar 

  12. Hickman, A.B., Waninger, S., Scocca, J.J. & Dyda, F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 at 2.7Å resolution. Cell 89, 227 –237 (1997).

    Article  CAS  Google Scholar 

  13. Kwon, H.J., Tirumalai, R., Landy, A. & Ellenberger, T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science 276, 126–131 ( 1997).

    Article  CAS  Google Scholar 

  14. Subramanya, H.S. et al. Crystal structure of the site-specific recombinase, XerD. EMBO J. 16, 5178–5187 (1997).

    Article  CAS  Google Scholar 

  15. Connolly, K.M., Wojciak, J.M. & Clubb, R.T. Site-specific DNA binding using a variation of the double stranded RNA binding motif. Nat. Struct. Biol. 5, 546–550 (1998).

    Article  CAS  Google Scholar 

  16. Harrison, S.C. A structural taxonomy of DNA-binding domains. Nature 353, 715–719 (1991).

    Article  CAS  Google Scholar 

  17. Luisi, B. in DNA–protein: structural interactions (ed. Lilley, D.M.) 1–48 (Oxford University Press, Oxford; 1995).

    Google Scholar 

  18. Pabo, C.O. & Sauer, R.T. Transcription factors—structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053 (1992).

    Article  CAS  Google Scholar 

  19. Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dynamics 6, 63– 91 (1988).

    Article  CAS  Google Scholar 

  20. Thompson, J. & Landy, A. Empirical estimation of protein-Induced DNA bending angles: application to λ site-specific recombination complexes. Nucleic Acids Res. 16, 9687– 9705 (1988).

    Article  CAS  Google Scholar 

  21. Somers, W.S. & Phillips, S.E.V. Crystal structure of the Met repressor–operator complex at 2.8 Å resolution reveals DNA recognition. Nature 359, 387–393 (1992).

    Article  CAS  Google Scholar 

  22. Raumann, B.E., Rould, M.A., Pabo, C.O. & Sauer, R.T. DNA recognition by beta-sheets in the arc repressor-operator crystal structure. Nature 367, 754–757 ( 1994).

    Article  CAS  Google Scholar 

  23. Flick, K.E., Jurica, M.S., Monnat, R.J. Jr & Stoddard, B.L. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-Ppo I. Nature 394, 96–101 (1998).

    Article  CAS  Google Scholar 

  24. Kim, S., Moitoso de Vargas, L., Nunes-Duby, S.E. & Landy, A. Mapping of a higher order protein–DNA complex: two kinds of long-range interactions in lambda attL. Cell 63, 773–781 (1990).

    Article  CAS  Google Scholar 

  25. Han, Y.W., Gumport, R.I. & Gardner, J.F. Mapping the functional domains of the bacteriophage lambda integrase protein. J. Mol. Biol. 235, 908–925 (1994).

    Article  CAS  Google Scholar 

  26. Bailey, M.F., Davidson, B.E., Haralambidis, J., Kwok, T. & Sawyer, W.H. Thermodynamics of the interaction of the Escherichia coli regulatory protein TyrR with DNA studied by fluorescence spectroscopy. Biochemistry 37, 7431–7443 (1998).

    Article  CAS  Google Scholar 

  27. Grzesiek, S. & Bax, A. Improved 3D triple-resonance NMR techniques applied to a 31-kDa protein. J. Magn. Reson. 96, 432–440 (1992).

    CAS  Google Scholar 

  28. Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. J. Magn. Reson. 101, 201–205 (1993).

    Article  CAS  Google Scholar 

  29. Grzesiek, S. & Bax, A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291– 6293 (1992).

    Article  CAS  Google Scholar 

  30. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in C-13/N-15-enriched proteins by isotropic mixing of C-13 magnetization. J. Magn. Reson. B 101, 114– 119 (1993).

    Article  CAS  Google Scholar 

  31. Bax, A., Clore, G.M. & Gronenborn, A.M. 1H-1H Correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. Magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  32. Ikura, I., Kay, L.E. & Bax, A. Improved three-dimensional 1H-13C-1H correlation spectroscopy of a 13C-labeled protein using constant-time evolution. J. Biomol. NMR 1, 299– 304 (1991).

    Article  CAS  Google Scholar 

  33. Marion, D. et al. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann–Hahn-multiple quantum coherence and nuclear Overhauser–multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28, 6150–6156 (1989).

    Article  CAS  Google Scholar 

  34. Vuister, G.W. & Bax, A. Quantitative J correlation—a new approach for measuring homonuclear 3-bond J(H(N)H(α)) coupling constants in N-15-enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  35. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. An alternative 3D-NMR technique for correlating backbone N-15 with side chain H-beta-resonances in larger proteins. J Magn. Reson. 95, 636 –641 (1991).

    CAS  Google Scholar 

  36. Clore, G.M., Bax, A. & Gronenborn, G.M. Stereospecific assignment of beta-methylene protons in larger proteins using 3D 15N-separated Hartman–Hahn and 13-separated rotating frame Overhauser spectroscopy. J. Biomol. NMR 1, 13–22 ( 1991).

    Article  CAS  Google Scholar 

  37. Fesik, S.W. & Zuiderweg, E.R.P. Heteronuclear three-dimensional NMR spectroscopy. a strategy for the simplification of homonuclear two-dimensional NMR spectra. J. Magn. Reson. 78, 588– 593 (1988).

    Google Scholar 

  38. Vuister, G.W. et al. Increased resolution and improved spectral quality in 4-dimensional C-13/C-13-separated HMQC-NOESY-HMQC spectra using pulsed field gradients. J. Magn. Reson. B 101, 210– 213 (1993).

    Article  CAS  Google Scholar 

  39. Ikura, M. & Bax, A. Isotope-filtered 2D NMR of a protein peptide complex—study of a skeletal muscle myosin light chain kinase fragment bound to calmodulin. J. Am. Chem. Soc. 114 , 2433–2440 (1992).

    Article  CAS  Google Scholar 

  40. Lee, W., Revington, M.J., Arrowsmith, C. & Kay, L.E. A Pulsed field gradient isotope-filtered 3D C-13 HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Lett. 350, 87–90 ( 1994).

    Article  CAS  Google Scholar 

  41. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2 , 661–665 (1992).

    Article  CAS  Google Scholar 

  42. Delaglio, F. et al. NMRPipe—a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277 –293 (1995).

    Article  CAS  Google Scholar 

  43. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automated computer analysis of contour diagrams. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  44. Brünger, A.T. X-PLOR (Version 3.1): a system for X-ray crystallography and NMR (Yale Univ. Press, New Haven, CT; 1993).

    Google Scholar 

  45. Nilges, M. A Calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17, 297 –309 (1993).

    Article  CAS  Google Scholar 

  46. Garrett, D.S. The impact of direct refinement against three-bond HN-CαH coupling constants on protein determination by NMR. J. Magn. Reson. B 104, 99–103 (1994).

    Article  CAS  Google Scholar 

  47. Groneborn, A.M., & Clore, G.M. Analysis of the relative contributions of the nuclear Overhauser interproton distance restraints and the empirical energy function in the calculation of oligonucleotide structures using restrained molecular dynamics. Biochemistry 28 , 5978–5984 (1989).

    Article  Google Scholar 

  48. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamic simulated annealing. FEBS Lett. 229, 129– 136 (1988).

    Article  Google Scholar 

  49. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51– 55 (1996).

    Article  CAS  Google Scholar 

  50. Kamada, K., Horiuchi, T., Ohsumi, K., Shimaoto, N. & Morikawa, K. Structure of a replication-terminator protein complexed with DNA. Nature 383, 598– 603 (1996).

    Article  CAS  Google Scholar 

  51. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 257–2637 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the U.S. Department of Energy and the National Institutes of Health. We thank F. Delaglio and D. Garrett for software support; T. Dieckmann, M. Grzeskowiak and M. Phillips for technical support; F. Allain, J. Bowie, D. Eisenberg, and C. Kim for useful discussions. We also thank B. Stoddard for the coordinates of the I-PpoI DNA complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Clubb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojciak, J., Connolly, K. & Clubb, R. NMR structure of the Tn916 integrase–DNA complex. Nat Struct Mol Biol 6, 366–373 (1999). https://doi.org/10.1038/7603

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing